MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nltled Structured version   Visualization version   GIF version

Theorem nltled 11055
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
nltled.1 (𝜑 → ¬ 𝐵 < 𝐴)
Assertion
Ref Expression
nltled (𝜑𝐴𝐵)

Proof of Theorem nltled
StepHypRef Expression
1 nltled.1 . 2 (𝜑 → ¬ 𝐵 < 𝐴)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
42, 3lenltd 11051 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
51, 4mpbird 256 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108   class class class wbr 5070  cr 10801   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-xr 10944  df-le 10946
This theorem is referenced by:  dedekind  11068  suprub  11866  infrelb  11890  suprzub  12608  prodge0rd  12766  seqf1olem1  13690  bitsfzolem  16069  bitsmod  16071  reconnlem2  23896  ioombl1lem4  24630  dgrub  25300  dgrlb  25302  1smat1  31656  metakunt28  40080  metakunt30  40082  imo72b2  41672  dvbdfbdioolem2  43360  stoweidlem14  43445  fourierdlem10  43548  fourierdlem12  43550  fourierdlem20  43558  fourierdlem24  43562  fourierdlem50  43587  fourierdlem54  43591  fourierdlem63  43600  fourierdlem65  43602  fourierdlem75  43612  fourierdlem79  43616  fouriersw  43662  etransclem3  43668  etransclem7  43672  etransclem10  43675  etransclem15  43680  etransclem20  43685  etransclem21  43686  etransclem22  43687  etransclem24  43689  etransclem25  43690  etransclem27  43692  etransclem32  43697
  Copyright terms: Public domain W3C validator