| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nltled | Structured version Visualization version GIF version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| nltled.1 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Ref | Expression |
|---|---|
| nltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11327 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-xr 11219 df-le 11221 |
| This theorem is referenced by: dedekind 11344 suprub 12151 infrelb 12175 suprzub 12905 prodge0rd 13067 seqf1olem1 14013 bitsfzolem 16411 bitsmod 16413 reconnlem2 24723 ioombl1lem4 25469 dgrub 26146 dgrlb 26148 suppssnn0 32737 constrsqrtcl 33776 1smat1 33801 sn-suprubd 42489 imo72b2 44168 dvbdfbdioolem2 45934 stoweidlem14 46019 fourierdlem10 46122 fourierdlem12 46124 fourierdlem20 46132 fourierdlem24 46136 fourierdlem50 46161 fourierdlem54 46165 fourierdlem63 46174 fourierdlem65 46176 fourierdlem75 46186 fourierdlem79 46190 fouriersw 46236 etransclem3 46242 etransclem7 46246 etransclem10 46249 etransclem15 46254 etransclem20 46259 etransclem21 46260 etransclem22 46261 etransclem24 46263 etransclem25 46264 etransclem27 46266 etransclem32 46271 |
| Copyright terms: Public domain | W3C validator |