| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nltled | Structured version Visualization version GIF version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| nltled.1 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Ref | Expression |
|---|---|
| nltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11280 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-xr 11172 df-le 11174 |
| This theorem is referenced by: dedekind 11297 suprub 12104 infrelb 12128 suprzub 12858 prodge0rd 13020 seqf1olem1 13966 bitsfzolem 16363 bitsmod 16365 reconnlem2 24732 ioombl1lem4 25478 dgrub 26155 dgrlb 26157 suppssnn0 32763 constrsqrtcl 33745 1smat1 33770 sn-suprubd 42467 imo72b2 44145 dvbdfbdioolem2 45911 stoweidlem14 45996 fourierdlem10 46099 fourierdlem12 46101 fourierdlem20 46109 fourierdlem24 46113 fourierdlem50 46138 fourierdlem54 46142 fourierdlem63 46151 fourierdlem65 46153 fourierdlem75 46163 fourierdlem79 46167 fouriersw 46213 etransclem3 46219 etransclem7 46223 etransclem10 46226 etransclem15 46231 etransclem20 46236 etransclem21 46237 etransclem22 46238 etransclem24 46240 etransclem25 46241 etransclem27 46243 etransclem32 46248 |
| Copyright terms: Public domain | W3C validator |