![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nltled | Structured version Visualization version GIF version |
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
nltled.1 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Ref | Expression |
---|---|
nltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltled.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 2, 3 | lenltd 11391 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2099 class class class wbr 5148 ℝcr 11138 < clt 11279 ≤ cle 11280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-xr 11283 df-le 11285 |
This theorem is referenced by: dedekind 11408 suprub 12206 infrelb 12230 suprzub 12954 prodge0rd 13114 seqf1olem1 14039 bitsfzolem 16409 bitsmod 16411 reconnlem2 24756 ioombl1lem4 25503 dgrub 26181 dgrlb 26183 suppssnn0 32587 1smat1 33405 metakunt28 41684 metakunt30 41686 imo72b2 43602 dvbdfbdioolem2 45317 stoweidlem14 45402 fourierdlem10 45505 fourierdlem12 45507 fourierdlem20 45515 fourierdlem24 45519 fourierdlem50 45544 fourierdlem54 45548 fourierdlem63 45557 fourierdlem65 45559 fourierdlem75 45569 fourierdlem79 45573 fouriersw 45619 etransclem3 45625 etransclem7 45629 etransclem10 45632 etransclem15 45637 etransclem20 45642 etransclem21 45643 etransclem22 45644 etransclem24 45646 etransclem25 45647 etransclem27 45649 etransclem32 45654 |
Copyright terms: Public domain | W3C validator |