| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nltled | Structured version Visualization version GIF version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| nltled.1 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Ref | Expression |
|---|---|
| nltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11268 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 class class class wbr 5095 ℝcr 11014 < clt 11155 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-xr 11159 df-le 11161 |
| This theorem is referenced by: dedekind 11285 suprub 12092 infrelb 12116 suprzub 12841 prodge0rd 13003 seqf1olem1 13952 bitsfzolem 16349 bitsmod 16351 reconnlem2 24746 ioombl1lem4 25492 dgrub 26169 dgrlb 26171 suppssnn0 32794 constrsqrtcl 33815 1smat1 33840 sn-suprubd 42615 imo72b2 44292 dvbdfbdioolem2 46054 stoweidlem14 46139 fourierdlem10 46242 fourierdlem12 46244 fourierdlem20 46252 fourierdlem24 46256 fourierdlem50 46281 fourierdlem54 46285 fourierdlem63 46294 fourierdlem65 46296 fourierdlem75 46306 fourierdlem79 46310 fouriersw 46356 etransclem3 46362 etransclem7 46366 etransclem10 46369 etransclem15 46374 etransclem20 46379 etransclem21 46380 etransclem22 46381 etransclem24 46383 etransclem25 46384 etransclem27 46386 etransclem32 46391 |
| Copyright terms: Public domain | W3C validator |