| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nltled | Structured version Visualization version GIF version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| nltled.1 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Ref | Expression |
|---|---|
| nltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11259 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 class class class wbr 5091 ℝcr 11005 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-xr 11150 df-le 11152 |
| This theorem is referenced by: dedekind 11276 suprub 12083 infrelb 12107 suprzub 12837 prodge0rd 12999 seqf1olem1 13948 bitsfzolem 16345 bitsmod 16347 reconnlem2 24744 ioombl1lem4 25490 dgrub 26167 dgrlb 26169 suppssnn0 32785 constrsqrtcl 33790 1smat1 33815 sn-suprubd 42533 imo72b2 44211 dvbdfbdioolem2 45973 stoweidlem14 46058 fourierdlem10 46161 fourierdlem12 46163 fourierdlem20 46171 fourierdlem24 46175 fourierdlem50 46200 fourierdlem54 46204 fourierdlem63 46213 fourierdlem65 46215 fourierdlem75 46225 fourierdlem79 46229 fouriersw 46275 etransclem3 46281 etransclem7 46285 etransclem10 46288 etransclem15 46293 etransclem20 46298 etransclem21 46299 etransclem22 46300 etransclem24 46302 etransclem25 46303 etransclem27 46305 etransclem32 46310 |
| Copyright terms: Public domain | W3C validator |