![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nltled | Structured version Visualization version GIF version |
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
nltled.1 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Ref | Expression |
---|---|
nltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltled.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 2, 3 | lenltd 10473 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | 1, 4 | mpbird 249 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2157 class class class wbr 4843 ℝcr 10223 < clt 10363 ≤ cle 10364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-cnv 5320 df-xr 10367 df-le 10369 |
This theorem is referenced by: infrelb 11300 prodge0rd 12182 1smat1 30386 imo72b2 39257 dvbdfbdioolem2 40888 stoweidlem14 40974 fourierdlem10 41077 fourierdlem12 41079 fourierdlem20 41087 fourierdlem24 41091 fourierdlem50 41116 fourierdlem54 41120 fourierdlem63 41129 fourierdlem65 41131 fourierdlem75 41141 fourierdlem79 41145 fouriersw 41191 etransclem3 41197 etransclem7 41201 etransclem10 41204 etransclem15 41209 etransclem20 41214 etransclem21 41215 etransclem22 41216 etransclem24 41218 etransclem25 41219 etransclem27 41221 etransclem32 41226 |
Copyright terms: Public domain | W3C validator |