| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nltled | Structured version Visualization version GIF version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| nltled.1 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Ref | Expression |
|---|---|
| nltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11381 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 < clt 11269 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-xr 11273 df-le 11275 |
| This theorem is referenced by: dedekind 11398 suprub 12203 infrelb 12227 suprzub 12955 prodge0rd 13116 seqf1olem1 14059 bitsfzolem 16453 bitsmod 16455 reconnlem2 24767 ioombl1lem4 25514 dgrub 26191 dgrlb 26193 suppssnn0 32784 constrsqrtcl 33813 1smat1 33835 metakunt28 42245 metakunt30 42247 sn-suprubd 42517 imo72b2 44196 dvbdfbdioolem2 45958 stoweidlem14 46043 fourierdlem10 46146 fourierdlem12 46148 fourierdlem20 46156 fourierdlem24 46160 fourierdlem50 46185 fourierdlem54 46189 fourierdlem63 46198 fourierdlem65 46200 fourierdlem75 46210 fourierdlem79 46214 fouriersw 46260 etransclem3 46266 etransclem7 46270 etransclem10 46273 etransclem15 46278 etransclem20 46283 etransclem21 46284 etransclem22 46285 etransclem24 46287 etransclem25 46288 etransclem27 46290 etransclem32 46295 |
| Copyright terms: Public domain | W3C validator |