![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prodge0rd | Structured version Visualization version GIF version |
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.) |
Ref | Expression |
---|---|
prodge0rd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
prodge0rd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
prodge0rd.3 | ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) |
Ref | Expression |
---|---|
prodge0rd | ⊢ (𝜑 → 0 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11262 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
2 | prodge0rd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | prodge0rd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
4 | 3 | rpred 13075 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4, 2 | remulcld 11289 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
6 | prodge0rd.3 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | |
7 | 1, 5, 6 | lensymd 11410 | . . 3 ⊢ (𝜑 → ¬ (𝐴 · 𝐵) < 0) |
8 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℝ) |
9 | 2 | renegcld 11688 | . . . . . . . 8 ⊢ (𝜑 → -𝐵 ∈ ℝ) |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → -𝐵 ∈ ℝ) |
11 | 3 | rpgt0d 13078 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝐴) |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < 𝐴) |
13 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < -𝐵) | |
14 | 8, 10, 12, 13 | mulgt0d 11414 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < (𝐴 · -𝐵)) |
15 | 4 | recnd 11287 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℂ) |
17 | 2 | recnd 11287 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐵 ∈ ℂ) |
19 | 16, 18 | mulneg2d 11715 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < -𝐵) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
20 | 14, 19 | breqtrd 5174 | . . . . 5 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < -(𝐴 · 𝐵)) |
21 | 20 | ex 412 | . . . 4 ⊢ (𝜑 → (0 < -𝐵 → 0 < -(𝐴 · 𝐵))) |
22 | 2 | lt0neg1d 11830 | . . . 4 ⊢ (𝜑 → (𝐵 < 0 ↔ 0 < -𝐵)) |
23 | 5 | lt0neg1d 11830 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵))) |
24 | 21, 22, 23 | 3imtr4d 294 | . . 3 ⊢ (𝜑 → (𝐵 < 0 → (𝐴 · 𝐵) < 0)) |
25 | 7, 24 | mtod 198 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 0) |
26 | 1, 2, 25 | nltled 11409 | 1 ⊢ (𝜑 → 0 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 · cmul 11158 < clt 11293 ≤ cle 11294 -cneg 11491 ℝ+crp 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-rp 13033 |
This theorem is referenced by: prodge0ld 13141 oexpneg 16379 evennn02n 16384 nvge0 30702 oexpnegALTV 47602 |
Copyright terms: Public domain | W3C validator |