Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prodge0rd | Structured version Visualization version GIF version |
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.) |
Ref | Expression |
---|---|
prodge0rd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
prodge0rd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
prodge0rd.3 | ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) |
Ref | Expression |
---|---|
prodge0rd | ⊢ (𝜑 → 0 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10695 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
2 | prodge0rd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | prodge0rd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
4 | 3 | rpred 12485 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4, 2 | remulcld 10722 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
6 | prodge0rd.3 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | |
7 | 1, 5, 6 | lensymd 10842 | . . 3 ⊢ (𝜑 → ¬ (𝐴 · 𝐵) < 0) |
8 | 4 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℝ) |
9 | 2 | renegcld 11118 | . . . . . . . 8 ⊢ (𝜑 → -𝐵 ∈ ℝ) |
10 | 9 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → -𝐵 ∈ ℝ) |
11 | 3 | rpgt0d 12488 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝐴) |
12 | 11 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < 𝐴) |
13 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < -𝐵) | |
14 | 8, 10, 12, 13 | mulgt0d 10846 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < (𝐴 · -𝐵)) |
15 | 4 | recnd 10720 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 15 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℂ) |
17 | 2 | recnd 10720 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
18 | 17 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐵 ∈ ℂ) |
19 | 16, 18 | mulneg2d 11145 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < -𝐵) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
20 | 14, 19 | breqtrd 5062 | . . . . 5 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < -(𝐴 · 𝐵)) |
21 | 20 | ex 416 | . . . 4 ⊢ (𝜑 → (0 < -𝐵 → 0 < -(𝐴 · 𝐵))) |
22 | 2 | lt0neg1d 11260 | . . . 4 ⊢ (𝜑 → (𝐵 < 0 ↔ 0 < -𝐵)) |
23 | 5 | lt0neg1d 11260 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵))) |
24 | 21, 22, 23 | 3imtr4d 297 | . . 3 ⊢ (𝜑 → (𝐵 < 0 → (𝐴 · 𝐵) < 0)) |
25 | 7, 24 | mtod 201 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 0) |
26 | 1, 2, 25 | nltled 10841 | 1 ⊢ (𝜑 → 0 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 class class class wbr 5036 (class class class)co 7156 ℂcc 10586 ℝcr 10587 0cc0 10588 · cmul 10593 < clt 10726 ≤ cle 10727 -cneg 10922 ℝ+crp 12443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-rp 12444 |
This theorem is referenced by: prodge0ld 12551 oexpneg 15759 evennn02n 15764 nvge0 28568 oexpnegALTV 44611 |
Copyright terms: Public domain | W3C validator |