Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prodge0rd | Structured version Visualization version GIF version |
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.) |
Ref | Expression |
---|---|
prodge0rd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
prodge0rd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
prodge0rd.3 | ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) |
Ref | Expression |
---|---|
prodge0rd | ⊢ (𝜑 → 0 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11024 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
2 | prodge0rd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | prodge0rd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
4 | 3 | rpred 12818 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4, 2 | remulcld 11051 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
6 | prodge0rd.3 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | |
7 | 1, 5, 6 | lensymd 11172 | . . 3 ⊢ (𝜑 → ¬ (𝐴 · 𝐵) < 0) |
8 | 4 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℝ) |
9 | 2 | renegcld 11448 | . . . . . . . 8 ⊢ (𝜑 → -𝐵 ∈ ℝ) |
10 | 9 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → -𝐵 ∈ ℝ) |
11 | 3 | rpgt0d 12821 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝐴) |
12 | 11 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < 𝐴) |
13 | simpr 486 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < -𝐵) | |
14 | 8, 10, 12, 13 | mulgt0d 11176 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < (𝐴 · -𝐵)) |
15 | 4 | recnd 11049 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 15 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℂ) |
17 | 2 | recnd 11049 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
18 | 17 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐵 ∈ ℂ) |
19 | 16, 18 | mulneg2d 11475 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < -𝐵) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
20 | 14, 19 | breqtrd 5107 | . . . . 5 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < -(𝐴 · 𝐵)) |
21 | 20 | ex 414 | . . . 4 ⊢ (𝜑 → (0 < -𝐵 → 0 < -(𝐴 · 𝐵))) |
22 | 2 | lt0neg1d 11590 | . . . 4 ⊢ (𝜑 → (𝐵 < 0 ↔ 0 < -𝐵)) |
23 | 5 | lt0neg1d 11590 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵))) |
24 | 21, 22, 23 | 3imtr4d 294 | . . 3 ⊢ (𝜑 → (𝐵 < 0 → (𝐴 · 𝐵) < 0)) |
25 | 7, 24 | mtod 197 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 0) |
26 | 1, 2, 25 | nltled 11171 | 1 ⊢ (𝜑 → 0 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 class class class wbr 5081 (class class class)co 7307 ℂcc 10915 ℝcr 10916 0cc0 10917 · cmul 10922 < clt 11055 ≤ cle 11056 -cneg 11252 ℝ+crp 12776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-rp 12777 |
This theorem is referenced by: prodge0ld 12884 oexpneg 16099 evennn02n 16104 nvge0 29080 oexpnegALTV 45187 |
Copyright terms: Public domain | W3C validator |