MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodge0rd Structured version   Visualization version   GIF version

Theorem prodge0rd 13021
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
prodge0rd.1 (𝜑𝐴 ∈ ℝ+)
prodge0rd.2 (𝜑𝐵 ∈ ℝ)
prodge0rd.3 (𝜑 → 0 ≤ (𝐴 · 𝐵))
Assertion
Ref Expression
prodge0rd (𝜑 → 0 ≤ 𝐵)

Proof of Theorem prodge0rd
StepHypRef Expression
1 0red 11137 . 2 (𝜑 → 0 ∈ ℝ)
2 prodge0rd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 prodge0rd.1 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
43rpred 12956 . . . . 5 (𝜑𝐴 ∈ ℝ)
54, 2remulcld 11164 . . . 4 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
6 prodge0rd.3 . . . 4 (𝜑 → 0 ≤ (𝐴 · 𝐵))
71, 5, 6lensymd 11286 . . 3 (𝜑 → ¬ (𝐴 · 𝐵) < 0)
84adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℝ)
92renegcld 11566 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℝ)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → -𝐵 ∈ ℝ)
113rpgt0d 12959 . . . . . . . 8 (𝜑 → 0 < 𝐴)
1211adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 0 < 𝐴)
13 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 0 < -𝐵)
148, 10, 12, 13mulgt0d 11290 . . . . . 6 ((𝜑 ∧ 0 < -𝐵) → 0 < (𝐴 · -𝐵))
154recnd 11162 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1615adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℂ)
172recnd 11162 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐵 ∈ ℂ)
1916, 18mulneg2d 11593 . . . . . 6 ((𝜑 ∧ 0 < -𝐵) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
2014, 19breqtrd 5121 . . . . 5 ((𝜑 ∧ 0 < -𝐵) → 0 < -(𝐴 · 𝐵))
2120ex 412 . . . 4 (𝜑 → (0 < -𝐵 → 0 < -(𝐴 · 𝐵)))
222lt0neg1d 11708 . . . 4 (𝜑 → (𝐵 < 0 ↔ 0 < -𝐵))
235lt0neg1d 11708 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
2421, 22, 233imtr4d 294 . . 3 (𝜑 → (𝐵 < 0 → (𝐴 · 𝐵) < 0))
257, 24mtod 198 . 2 (𝜑 → ¬ 𝐵 < 0)
261, 2, 25nltled 11285 1 (𝜑 → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5095  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028   · cmul 11033   < clt 11168  cle 11169  -cneg 11367  +crp 12912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-rp 12913
This theorem is referenced by:  prodge0ld  13022  oexpneg  16275  evennn02n  16280  nvge0  30636  oexpnegALTV  47681
  Copyright terms: Public domain W3C validator