MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodge0rd Structured version   Visualization version   GIF version

Theorem prodge0rd 12819
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
prodge0rd.1 (𝜑𝐴 ∈ ℝ+)
prodge0rd.2 (𝜑𝐵 ∈ ℝ)
prodge0rd.3 (𝜑 → 0 ≤ (𝐴 · 𝐵))
Assertion
Ref Expression
prodge0rd (𝜑 → 0 ≤ 𝐵)

Proof of Theorem prodge0rd
StepHypRef Expression
1 0red 10962 . 2 (𝜑 → 0 ∈ ℝ)
2 prodge0rd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 prodge0rd.1 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
43rpred 12754 . . . . 5 (𝜑𝐴 ∈ ℝ)
54, 2remulcld 10989 . . . 4 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
6 prodge0rd.3 . . . 4 (𝜑 → 0 ≤ (𝐴 · 𝐵))
71, 5, 6lensymd 11109 . . 3 (𝜑 → ¬ (𝐴 · 𝐵) < 0)
84adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℝ)
92renegcld 11385 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℝ)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → -𝐵 ∈ ℝ)
113rpgt0d 12757 . . . . . . . 8 (𝜑 → 0 < 𝐴)
1211adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 0 < 𝐴)
13 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 0 < -𝐵)
148, 10, 12, 13mulgt0d 11113 . . . . . 6 ((𝜑 ∧ 0 < -𝐵) → 0 < (𝐴 · -𝐵))
154recnd 10987 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1615adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℂ)
172recnd 10987 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐵 ∈ ℂ)
1916, 18mulneg2d 11412 . . . . . 6 ((𝜑 ∧ 0 < -𝐵) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
2014, 19breqtrd 5104 . . . . 5 ((𝜑 ∧ 0 < -𝐵) → 0 < -(𝐴 · 𝐵))
2120ex 412 . . . 4 (𝜑 → (0 < -𝐵 → 0 < -(𝐴 · 𝐵)))
222lt0neg1d 11527 . . . 4 (𝜑 → (𝐵 < 0 ↔ 0 < -𝐵))
235lt0neg1d 11527 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
2421, 22, 233imtr4d 293 . . 3 (𝜑 → (𝐵 < 0 → (𝐴 · 𝐵) < 0))
257, 24mtod 197 . 2 (𝜑 → ¬ 𝐵 < 0)
261, 2, 25nltled 11108 1 (𝜑 → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5078  (class class class)co 7268  cc 10853  cr 10854  0cc0 10855   · cmul 10860   < clt 10993  cle 10994  -cneg 11189  +crp 12712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-rp 12713
This theorem is referenced by:  prodge0ld  12820  oexpneg  16035  evennn02n  16040  nvge0  29014  oexpnegALTV  45081
  Copyright terms: Public domain W3C validator