MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodge0rd Structured version   Visualization version   GIF version

Theorem prodge0rd 13121
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
prodge0rd.1 (𝜑𝐴 ∈ ℝ+)
prodge0rd.2 (𝜑𝐵 ∈ ℝ)
prodge0rd.3 (𝜑 → 0 ≤ (𝐴 · 𝐵))
Assertion
Ref Expression
prodge0rd (𝜑 → 0 ≤ 𝐵)

Proof of Theorem prodge0rd
StepHypRef Expression
1 0red 11243 . 2 (𝜑 → 0 ∈ ℝ)
2 prodge0rd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 prodge0rd.1 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
43rpred 13056 . . . . 5 (𝜑𝐴 ∈ ℝ)
54, 2remulcld 11270 . . . 4 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
6 prodge0rd.3 . . . 4 (𝜑 → 0 ≤ (𝐴 · 𝐵))
71, 5, 6lensymd 11391 . . 3 (𝜑 → ¬ (𝐴 · 𝐵) < 0)
84adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℝ)
92renegcld 11669 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℝ)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → -𝐵 ∈ ℝ)
113rpgt0d 13059 . . . . . . . 8 (𝜑 → 0 < 𝐴)
1211adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 0 < 𝐴)
13 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 0 < -𝐵)
148, 10, 12, 13mulgt0d 11395 . . . . . 6 ((𝜑 ∧ 0 < -𝐵) → 0 < (𝐴 · -𝐵))
154recnd 11268 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1615adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℂ)
172recnd 11268 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐵 ∈ ℂ)
1916, 18mulneg2d 11696 . . . . . 6 ((𝜑 ∧ 0 < -𝐵) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
2014, 19breqtrd 5150 . . . . 5 ((𝜑 ∧ 0 < -𝐵) → 0 < -(𝐴 · 𝐵))
2120ex 412 . . . 4 (𝜑 → (0 < -𝐵 → 0 < -(𝐴 · 𝐵)))
222lt0neg1d 11811 . . . 4 (𝜑 → (𝐵 < 0 ↔ 0 < -𝐵))
235lt0neg1d 11811 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
2421, 22, 233imtr4d 294 . . 3 (𝜑 → (𝐵 < 0 → (𝐴 · 𝐵) < 0))
257, 24mtod 198 . 2 (𝜑 → ¬ 𝐵 < 0)
261, 2, 25nltled 11390 1 (𝜑 → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5124  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134   · cmul 11139   < clt 11274  cle 11275  -cneg 11472  +crp 13013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-rp 13014
This theorem is referenced by:  prodge0ld  13122  oexpneg  16369  evennn02n  16374  nvge0  30659  oexpnegALTV  47658
  Copyright terms: Public domain W3C validator