Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prodge0rd | Structured version Visualization version GIF version |
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.) |
Ref | Expression |
---|---|
prodge0rd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
prodge0rd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
prodge0rd.3 | ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) |
Ref | Expression |
---|---|
prodge0rd | ⊢ (𝜑 → 0 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10962 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
2 | prodge0rd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | prodge0rd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
4 | 3 | rpred 12754 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4, 2 | remulcld 10989 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
6 | prodge0rd.3 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | |
7 | 1, 5, 6 | lensymd 11109 | . . 3 ⊢ (𝜑 → ¬ (𝐴 · 𝐵) < 0) |
8 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℝ) |
9 | 2 | renegcld 11385 | . . . . . . . 8 ⊢ (𝜑 → -𝐵 ∈ ℝ) |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → -𝐵 ∈ ℝ) |
11 | 3 | rpgt0d 12757 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝐴) |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < 𝐴) |
13 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < -𝐵) | |
14 | 8, 10, 12, 13 | mulgt0d 11113 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < (𝐴 · -𝐵)) |
15 | 4 | recnd 10987 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℂ) |
17 | 2 | recnd 10987 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < -𝐵) → 𝐵 ∈ ℂ) |
19 | 16, 18 | mulneg2d 11412 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < -𝐵) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
20 | 14, 19 | breqtrd 5104 | . . . . 5 ⊢ ((𝜑 ∧ 0 < -𝐵) → 0 < -(𝐴 · 𝐵)) |
21 | 20 | ex 412 | . . . 4 ⊢ (𝜑 → (0 < -𝐵 → 0 < -(𝐴 · 𝐵))) |
22 | 2 | lt0neg1d 11527 | . . . 4 ⊢ (𝜑 → (𝐵 < 0 ↔ 0 < -𝐵)) |
23 | 5 | lt0neg1d 11527 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵))) |
24 | 21, 22, 23 | 3imtr4d 293 | . . 3 ⊢ (𝜑 → (𝐵 < 0 → (𝐴 · 𝐵) < 0)) |
25 | 7, 24 | mtod 197 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 0) |
26 | 1, 2, 25 | nltled 11108 | 1 ⊢ (𝜑 → 0 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 ℂcc 10853 ℝcr 10854 0cc0 10855 · cmul 10860 < clt 10993 ≤ cle 10994 -cneg 11189 ℝ+crp 12712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-rp 12713 |
This theorem is referenced by: prodge0ld 12820 oexpneg 16035 evennn02n 16040 nvge0 29014 oexpnegALTV 45081 |
Copyright terms: Public domain | W3C validator |