Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodge0rd Structured version   Visualization version   GIF version

Theorem prodge0rd 12550
 Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
prodge0rd.1 (𝜑𝐴 ∈ ℝ+)
prodge0rd.2 (𝜑𝐵 ∈ ℝ)
prodge0rd.3 (𝜑 → 0 ≤ (𝐴 · 𝐵))
Assertion
Ref Expression
prodge0rd (𝜑 → 0 ≤ 𝐵)

Proof of Theorem prodge0rd
StepHypRef Expression
1 0red 10695 . 2 (𝜑 → 0 ∈ ℝ)
2 prodge0rd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 prodge0rd.1 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
43rpred 12485 . . . . 5 (𝜑𝐴 ∈ ℝ)
54, 2remulcld 10722 . . . 4 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
6 prodge0rd.3 . . . 4 (𝜑 → 0 ≤ (𝐴 · 𝐵))
71, 5, 6lensymd 10842 . . 3 (𝜑 → ¬ (𝐴 · 𝐵) < 0)
84adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℝ)
92renegcld 11118 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℝ)
109adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → -𝐵 ∈ ℝ)
113rpgt0d 12488 . . . . . . . 8 (𝜑 → 0 < 𝐴)
1211adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 0 < 𝐴)
13 simpr 488 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 0 < -𝐵)
148, 10, 12, 13mulgt0d 10846 . . . . . 6 ((𝜑 ∧ 0 < -𝐵) → 0 < (𝐴 · -𝐵))
154recnd 10720 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1615adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℂ)
172recnd 10720 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1817adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐵 ∈ ℂ)
1916, 18mulneg2d 11145 . . . . . 6 ((𝜑 ∧ 0 < -𝐵) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
2014, 19breqtrd 5062 . . . . 5 ((𝜑 ∧ 0 < -𝐵) → 0 < -(𝐴 · 𝐵))
2120ex 416 . . . 4 (𝜑 → (0 < -𝐵 → 0 < -(𝐴 · 𝐵)))
222lt0neg1d 11260 . . . 4 (𝜑 → (𝐵 < 0 ↔ 0 < -𝐵))
235lt0neg1d 11260 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
2421, 22, 233imtr4d 297 . . 3 (𝜑 → (𝐵 < 0 → (𝐴 · 𝐵) < 0))
257, 24mtod 201 . 2 (𝜑 → ¬ 𝐵 < 0)
261, 2, 25nltled 10841 1 (𝜑 → 0 ≤ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2111   class class class wbr 5036  (class class class)co 7156  ℂcc 10586  ℝcr 10587  0cc0 10588   · cmul 10593   < clt 10726   ≤ cle 10727  -cneg 10922  ℝ+crp 12443 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-rp 12444 This theorem is referenced by:  prodge0ld  12551  oexpneg  15759  evennn02n  15764  nvge0  28568  oexpnegALTV  44611
 Copyright terms: Public domain W3C validator