MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodge0rd Structured version   Visualization version   GIF version

Theorem prodge0rd 13143
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
prodge0rd.1 (𝜑𝐴 ∈ ℝ+)
prodge0rd.2 (𝜑𝐵 ∈ ℝ)
prodge0rd.3 (𝜑 → 0 ≤ (𝐴 · 𝐵))
Assertion
Ref Expression
prodge0rd (𝜑 → 0 ≤ 𝐵)

Proof of Theorem prodge0rd
StepHypRef Expression
1 0red 11265 . 2 (𝜑 → 0 ∈ ℝ)
2 prodge0rd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 prodge0rd.1 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
43rpred 13078 . . . . 5 (𝜑𝐴 ∈ ℝ)
54, 2remulcld 11292 . . . 4 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
6 prodge0rd.3 . . . 4 (𝜑 → 0 ≤ (𝐴 · 𝐵))
71, 5, 6lensymd 11413 . . 3 (𝜑 → ¬ (𝐴 · 𝐵) < 0)
84adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℝ)
92renegcld 11691 . . . . . . . 8 (𝜑 → -𝐵 ∈ ℝ)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → -𝐵 ∈ ℝ)
113rpgt0d 13081 . . . . . . . 8 (𝜑 → 0 < 𝐴)
1211adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 0 < 𝐴)
13 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 0 < -𝐵)
148, 10, 12, 13mulgt0d 11417 . . . . . 6 ((𝜑 ∧ 0 < -𝐵) → 0 < (𝐴 · -𝐵))
154recnd 11290 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1615adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐴 ∈ ℂ)
172recnd 11290 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < -𝐵) → 𝐵 ∈ ℂ)
1916, 18mulneg2d 11718 . . . . . 6 ((𝜑 ∧ 0 < -𝐵) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
2014, 19breqtrd 5168 . . . . 5 ((𝜑 ∧ 0 < -𝐵) → 0 < -(𝐴 · 𝐵))
2120ex 412 . . . 4 (𝜑 → (0 < -𝐵 → 0 < -(𝐴 · 𝐵)))
222lt0neg1d 11833 . . . 4 (𝜑 → (𝐵 < 0 ↔ 0 < -𝐵))
235lt0neg1d 11833 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
2421, 22, 233imtr4d 294 . . 3 (𝜑 → (𝐵 < 0 → (𝐴 · 𝐵) < 0))
257, 24mtod 198 . 2 (𝜑 → ¬ 𝐵 < 0)
261, 2, 25nltled 11412 1 (𝜑 → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107   class class class wbr 5142  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156   · cmul 11161   < clt 11296  cle 11297  -cneg 11494  +crp 13035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-rp 13036
This theorem is referenced by:  prodge0ld  13144  oexpneg  16383  evennn02n  16388  nvge0  30693  oexpnegALTV  47669
  Copyright terms: Public domain W3C validator