Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem7 Structured version   Visualization version   GIF version

Theorem etransclem7 43051
 Description: The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem7.n (𝜑𝑃 ∈ ℕ)
etransclem7.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem7.j (𝜑𝐽 ∈ (0...𝑀))
Assertion
Ref Expression
etransclem7 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem7
StepHypRef Expression
1 fzfid 13356 . 2 (𝜑 → (1...𝑀) ∈ Fin)
2 0zd 12001 . . 3 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑃 < (𝐶𝑗)) → 0 ∈ ℤ)
3 0zd 12001 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ∈ ℤ)
4 etransclem7.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
54nnzd 12094 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
65ad2antrr 725 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 𝑃 ∈ ℤ)
75adantr 484 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℤ)
8 etransclem7.c . . . . . . . . . . . . . 14 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
98adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐶:(0...𝑀)⟶(0...𝑁))
10 0zd 12001 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 0 ∈ ℤ)
11 fzp1ss 12973 . . . . . . . . . . . . . . . 16 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
1210, 11syl 17 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → ((0 + 1)...𝑀) ⊆ (0...𝑀))
13 id 22 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (1...𝑀))
14 1e0p1 12148 . . . . . . . . . . . . . . . . 17 1 = (0 + 1)
1514oveq1i 7155 . . . . . . . . . . . . . . . 16 (1...𝑀) = ((0 + 1)...𝑀)
1613, 15eleqtrdi 2900 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
1712, 16sseldd 3918 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
1817adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
199, 18ffvelrnd 6839 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
2019elfzelzd 12923 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ ℤ)
217, 20zsubcld 12100 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐶𝑗)) ∈ ℤ)
2221adantr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ ℤ)
233, 6, 223jca 1125 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℤ))
2420zred 12095 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ ℝ)
2524adantr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐶𝑗) ∈ ℝ)
266zred 12095 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 𝑃 ∈ ℝ)
27 simpr 488 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ¬ 𝑃 < (𝐶𝑗))
2825, 26, 27nltled 10797 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐶𝑗) ≤ 𝑃)
2926, 25subge0d 11237 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ≤ (𝑃 − (𝐶𝑗)) ↔ (𝐶𝑗) ≤ 𝑃))
3028, 29mpbird 260 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ≤ (𝑃 − (𝐶𝑗)))
31 elfzle1 12925 . . . . . . . . . . 11 ((𝐶𝑗) ∈ (0...𝑁) → 0 ≤ (𝐶𝑗))
3219, 31syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → 0 ≤ (𝐶𝑗))
3332adantr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ≤ (𝐶𝑗))
3426, 25subge02d 11239 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ≤ (𝐶𝑗) ↔ (𝑃 − (𝐶𝑗)) ≤ 𝑃))
3533, 34mpbid 235 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ≤ 𝑃)
3623, 30, 35jca32 519 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶𝑗)) ∧ (𝑃 − (𝐶𝑗)) ≤ 𝑃)))
37 elfz2 12912 . . . . . . 7 ((𝑃 − (𝐶𝑗)) ∈ (0...𝑃) ↔ ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶𝑗)) ∧ (𝑃 − (𝐶𝑗)) ≤ 𝑃)))
3836, 37sylibr 237 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ (0...𝑃))
39 permnn 13702 . . . . . 6 ((𝑃 − (𝐶𝑗)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℕ)
4038, 39syl 17 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℕ)
4140nnzd 12094 . . . 4 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℤ)
42 etransclem7.j . . . . . . . . 9 (𝜑𝐽 ∈ (0...𝑀))
4342elfzelzd 12923 . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
4443adantr 484 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
45 elfzelz 12922 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
4645adantl 485 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℤ)
4744, 46zsubcld 12100 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐽𝑗) ∈ ℤ)
4847adantr 484 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐽𝑗) ∈ ℤ)
49 elnn0z 12002 . . . . . 6 ((𝑃 − (𝐶𝑗)) ∈ ℕ0 ↔ ((𝑃 − (𝐶𝑗)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶𝑗))))
5022, 30, 49sylanbrc 586 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ ℕ0)
51 zexpcl 13460 . . . . 5 (((𝐽𝑗) ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℕ0) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) ∈ ℤ)
5248, 50, 51syl2anc 587 . . . 4 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) ∈ ℤ)
5341, 52zmulcld 12101 . . 3 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) ∈ ℤ)
542, 53ifclda 4462 . 2 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
551, 54fprodzcl 15320 1 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   ∈ wcel 2111   ⊆ wss 3883  ifcif 4428   class class class wbr 5034  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  ℝcr 10543  0cc0 10544  1c1 10545   + caddc 10547   · cmul 10549   < clt 10682   ≤ cle 10683   − cmin 10877   / cdiv 11304  ℕcn 11643  ℕ0cn0 11903  ℤcz 11989  ...cfz 12905  ↑cexp 13445  !cfa 13649  ∏cprod 15271 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-n0 11904  df-z 11990  df-uz 12252  df-rp 12398  df-fz 12906  df-fzo 13049  df-seq 13385  df-exp 13446  df-fac 13650  df-bc 13679  df-hash 13707  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-clim 14857  df-prod 15272 This theorem is referenced by:  etransclem15  43059  etransclem28  43072
 Copyright terms: Public domain W3C validator