Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem7 Structured version   Visualization version   GIF version

Theorem etransclem7 42546
Description: The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem7.n (𝜑𝑃 ∈ ℕ)
etransclem7.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem7.j (𝜑𝐽 ∈ (0...𝑀))
Assertion
Ref Expression
etransclem7 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem7
StepHypRef Expression
1 fzfid 13342 . 2 (𝜑 → (1...𝑀) ∈ Fin)
2 0zd 11994 . . 3 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑃 < (𝐶𝑗)) → 0 ∈ ℤ)
3 0zd 11994 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ∈ ℤ)
4 etransclem7.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
54nnzd 12087 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
65ad2antrr 724 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 𝑃 ∈ ℤ)
75adantr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℤ)
8 etransclem7.c . . . . . . . . . . . . . 14 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
98adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐶:(0...𝑀)⟶(0...𝑁))
10 0zd 11994 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 0 ∈ ℤ)
11 fzp1ss 12959 . . . . . . . . . . . . . . . 16 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
1210, 11syl 17 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → ((0 + 1)...𝑀) ⊆ (0...𝑀))
13 id 22 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (1...𝑀))
14 1e0p1 12141 . . . . . . . . . . . . . . . . 17 1 = (0 + 1)
1514oveq1i 7166 . . . . . . . . . . . . . . . 16 (1...𝑀) = ((0 + 1)...𝑀)
1613, 15eleqtrdi 2923 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
1712, 16sseldd 3968 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
1817adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
199, 18ffvelrnd 6852 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
2019elfzelzd 41602 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ ℤ)
217, 20zsubcld 12093 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐶𝑗)) ∈ ℤ)
2221adantr 483 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ ℤ)
233, 6, 223jca 1124 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℤ))
2420zred 12088 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ ℝ)
2524adantr 483 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐶𝑗) ∈ ℝ)
266zred 12088 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 𝑃 ∈ ℝ)
27 simpr 487 . . . . . . . . . 10 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ¬ 𝑃 < (𝐶𝑗))
2825, 26, 27nltled 10790 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐶𝑗) ≤ 𝑃)
2926, 25subge0d 11230 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ≤ (𝑃 − (𝐶𝑗)) ↔ (𝐶𝑗) ≤ 𝑃))
3028, 29mpbird 259 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ≤ (𝑃 − (𝐶𝑗)))
31 elfzle1 12911 . . . . . . . . . . 11 ((𝐶𝑗) ∈ (0...𝑁) → 0 ≤ (𝐶𝑗))
3219, 31syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → 0 ≤ (𝐶𝑗))
3332adantr 483 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ≤ (𝐶𝑗))
3426, 25subge02d 11232 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ≤ (𝐶𝑗) ↔ (𝑃 − (𝐶𝑗)) ≤ 𝑃))
3533, 34mpbid 234 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ≤ 𝑃)
3623, 30, 35jca32 518 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶𝑗)) ∧ (𝑃 − (𝐶𝑗)) ≤ 𝑃)))
37 elfz2 12900 . . . . . . 7 ((𝑃 − (𝐶𝑗)) ∈ (0...𝑃) ↔ ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶𝑗)) ∧ (𝑃 − (𝐶𝑗)) ≤ 𝑃)))
3836, 37sylibr 236 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ (0...𝑃))
39 permnn 13687 . . . . . 6 ((𝑃 − (𝐶𝑗)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℕ)
4038, 39syl 17 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℕ)
4140nnzd 12087 . . . 4 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℤ)
42 etransclem7.j . . . . . . . . 9 (𝜑𝐽 ∈ (0...𝑀))
4342elfzelzd 41602 . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
4443adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
45 elfzelz 12909 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
4645adantl 484 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℤ)
4744, 46zsubcld 12093 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐽𝑗) ∈ ℤ)
4847adantr 483 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐽𝑗) ∈ ℤ)
49 elnn0z 11995 . . . . . 6 ((𝑃 − (𝐶𝑗)) ∈ ℕ0 ↔ ((𝑃 − (𝐶𝑗)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶𝑗))))
5022, 30, 49sylanbrc 585 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ ℕ0)
51 zexpcl 13445 . . . . 5 (((𝐽𝑗) ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℕ0) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) ∈ ℤ)
5248, 50, 51syl2anc 586 . . . 4 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) ∈ ℤ)
5341, 52zmulcld 12094 . . 3 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) ∈ ℤ)
542, 53ifclda 4501 . 2 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
551, 54fprodzcl 15308 1 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083  wcel 2114  wss 3936  ifcif 4467   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  0cn0 11898  cz 11982  ...cfz 12893  cexp 13430  !cfa 13634  cprod 15259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260
This theorem is referenced by:  etransclem15  42554  etransclem28  42567
  Copyright terms: Public domain W3C validator