Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem7 Structured version   Visualization version   GIF version

Theorem etransclem7 46197
Description: The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem7.n (𝜑𝑃 ∈ ℕ)
etransclem7.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem7.j (𝜑𝐽 ∈ (0...𝑀))
Assertion
Ref Expression
etransclem7 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem7
StepHypRef Expression
1 fzfid 14011 . 2 (𝜑 → (1...𝑀) ∈ Fin)
2 0zd 12623 . . 3 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑃 < (𝐶𝑗)) → 0 ∈ ℤ)
3 0zd 12623 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ∈ ℤ)
4 etransclem7.n . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
54nnzd 12638 . . . . . . . 8 (𝜑𝑃 ∈ ℤ)
65ad2antrr 726 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 𝑃 ∈ ℤ)
75adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℤ)
8 etransclem7.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
98adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐶:(0...𝑀)⟶(0...𝑁))
10 0zd 12623 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 0 ∈ ℤ)
11 fzp1ss 13612 . . . . . . . . . . . . . 14 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
1210, 11syl 17 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → ((0 + 1)...𝑀) ⊆ (0...𝑀))
13 id 22 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (1...𝑀))
14 1e0p1 12773 . . . . . . . . . . . . . . 15 1 = (0 + 1)
1514oveq1i 7441 . . . . . . . . . . . . . 14 (1...𝑀) = ((0 + 1)...𝑀)
1613, 15eleqtrdi 2849 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
1712, 16sseldd 3996 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
1817adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
199, 18ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
2019elfzelzd 13562 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ ℤ)
217, 20zsubcld 12725 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐶𝑗)) ∈ ℤ)
2221adantr 480 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ ℤ)
2320zred 12720 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ ℝ)
2423adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐶𝑗) ∈ ℝ)
256zred 12720 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 𝑃 ∈ ℝ)
26 simpr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ¬ 𝑃 < (𝐶𝑗))
2724, 25, 26nltled 11409 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐶𝑗) ≤ 𝑃)
2825, 24subge0d 11851 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ≤ (𝑃 − (𝐶𝑗)) ↔ (𝐶𝑗) ≤ 𝑃))
2927, 28mpbird 257 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ≤ (𝑃 − (𝐶𝑗)))
30 elfzle1 13564 . . . . . . . . . 10 ((𝐶𝑗) ∈ (0...𝑁) → 0 ≤ (𝐶𝑗))
3119, 30syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → 0 ≤ (𝐶𝑗))
3231adantr 480 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ≤ (𝐶𝑗))
3325, 24subge02d 11853 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ≤ (𝐶𝑗) ↔ (𝑃 − (𝐶𝑗)) ≤ 𝑃))
3432, 33mpbid 232 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ≤ 𝑃)
353, 6, 22, 29, 34elfzd 13552 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ (0...𝑃))
36 permnn 14362 . . . . . 6 ((𝑃 − (𝐶𝑗)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℕ)
3735, 36syl 17 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℕ)
3837nnzd 12638 . . . 4 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℤ)
39 etransclem7.j . . . . . . . . 9 (𝜑𝐽 ∈ (0...𝑀))
4039elfzelzd 13562 . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
4140adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
42 elfzelz 13561 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
4342adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℤ)
4441, 43zsubcld 12725 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐽𝑗) ∈ ℤ)
4544adantr 480 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐽𝑗) ∈ ℤ)
46 elnn0z 12624 . . . . . 6 ((𝑃 − (𝐶𝑗)) ∈ ℕ0 ↔ ((𝑃 − (𝐶𝑗)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶𝑗))))
4722, 29, 46sylanbrc 583 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ ℕ0)
48 zexpcl 14114 . . . . 5 (((𝐽𝑗) ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℕ0) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) ∈ ℤ)
4945, 47, 48syl2anc 584 . . . 4 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) ∈ ℤ)
5038, 49zmulcld 12726 . . 3 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) ∈ ℤ)
512, 50ifclda 4566 . 2 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
521, 51fprodzcl 15987 1 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2106  wss 3963  ifcif 4531   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  0cn0 12524  cz 12611  ...cfz 13544  cexp 14099  !cfa 14309  cprod 15936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937
This theorem is referenced by:  etransclem15  46205  etransclem28  46218
  Copyright terms: Public domain W3C validator