Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem7 Structured version   Visualization version   GIF version

Theorem etransclem7 46261
Description: The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem7.n (𝜑𝑃 ∈ ℕ)
etransclem7.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem7.j (𝜑𝐽 ∈ (0...𝑀))
Assertion
Ref Expression
etransclem7 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem7
StepHypRef Expression
1 fzfid 14015 . 2 (𝜑 → (1...𝑀) ∈ Fin)
2 0zd 12627 . . 3 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑃 < (𝐶𝑗)) → 0 ∈ ℤ)
3 0zd 12627 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ∈ ℤ)
4 etransclem7.n . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
54nnzd 12642 . . . . . . . 8 (𝜑𝑃 ∈ ℤ)
65ad2antrr 726 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 𝑃 ∈ ℤ)
75adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℤ)
8 etransclem7.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
98adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐶:(0...𝑀)⟶(0...𝑁))
10 0zd 12627 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 0 ∈ ℤ)
11 fzp1ss 13616 . . . . . . . . . . . . . 14 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
1210, 11syl 17 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → ((0 + 1)...𝑀) ⊆ (0...𝑀))
13 id 22 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (1...𝑀))
14 1e0p1 12777 . . . . . . . . . . . . . . 15 1 = (0 + 1)
1514oveq1i 7442 . . . . . . . . . . . . . 14 (1...𝑀) = ((0 + 1)...𝑀)
1613, 15eleqtrdi 2850 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
1712, 16sseldd 3983 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
1817adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
199, 18ffvelcdmd 7104 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
2019elfzelzd 13566 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ ℤ)
217, 20zsubcld 12729 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐶𝑗)) ∈ ℤ)
2221adantr 480 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ ℤ)
2320zred 12724 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ ℝ)
2423adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐶𝑗) ∈ ℝ)
256zred 12724 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 𝑃 ∈ ℝ)
26 simpr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ¬ 𝑃 < (𝐶𝑗))
2724, 25, 26nltled 11412 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐶𝑗) ≤ 𝑃)
2825, 24subge0d 11854 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ≤ (𝑃 − (𝐶𝑗)) ↔ (𝐶𝑗) ≤ 𝑃))
2927, 28mpbird 257 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ≤ (𝑃 − (𝐶𝑗)))
30 elfzle1 13568 . . . . . . . . . 10 ((𝐶𝑗) ∈ (0...𝑁) → 0 ≤ (𝐶𝑗))
3119, 30syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → 0 ≤ (𝐶𝑗))
3231adantr 480 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ≤ (𝐶𝑗))
3325, 24subge02d 11856 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ≤ (𝐶𝑗) ↔ (𝑃 − (𝐶𝑗)) ≤ 𝑃))
3432, 33mpbid 232 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ≤ 𝑃)
353, 6, 22, 29, 34elfzd 13556 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ (0...𝑃))
36 permnn 14366 . . . . . 6 ((𝑃 − (𝐶𝑗)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℕ)
3735, 36syl 17 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℕ)
3837nnzd 12642 . . . 4 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℤ)
39 etransclem7.j . . . . . . . . 9 (𝜑𝐽 ∈ (0...𝑀))
4039elfzelzd 13566 . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
4140adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
42 elfzelz 13565 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
4342adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℤ)
4441, 43zsubcld 12729 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐽𝑗) ∈ ℤ)
4544adantr 480 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐽𝑗) ∈ ℤ)
46 elnn0z 12628 . . . . . 6 ((𝑃 − (𝐶𝑗)) ∈ ℕ0 ↔ ((𝑃 − (𝐶𝑗)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶𝑗))))
4722, 29, 46sylanbrc 583 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ ℕ0)
48 zexpcl 14118 . . . . 5 (((𝐽𝑗) ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℕ0) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) ∈ ℤ)
4945, 47, 48syl2anc 584 . . . 4 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) ∈ ℤ)
5038, 49zmulcld 12730 . . 3 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) ∈ ℤ)
512, 50ifclda 4560 . 2 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
521, 51fprodzcl 15991 1 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2107  wss 3950  ifcif 4524   class class class wbr 5142  wf 6556  cfv 6560  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cle 11297  cmin 11493   / cdiv 11921  cn 12267  0cn0 12528  cz 12615  ...cfz 13548  cexp 14103  !cfa 14313  cprod 15940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-prod 15941
This theorem is referenced by:  etransclem15  46269  etransclem28  46282
  Copyright terms: Public domain W3C validator