Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem7 Structured version   Visualization version   GIF version

Theorem etransclem7 46279
Description: The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem7.n (𝜑𝑃 ∈ ℕ)
etransclem7.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem7.j (𝜑𝐽 ∈ (0...𝑀))
Assertion
Ref Expression
etransclem7 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem7
StepHypRef Expression
1 fzfid 13875 . 2 (𝜑 → (1...𝑀) ∈ Fin)
2 0zd 12475 . . 3 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑃 < (𝐶𝑗)) → 0 ∈ ℤ)
3 0zd 12475 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ∈ ℤ)
4 etransclem7.n . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
54nnzd 12490 . . . . . . . 8 (𝜑𝑃 ∈ ℤ)
65ad2antrr 726 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 𝑃 ∈ ℤ)
75adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℤ)
8 etransclem7.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
98adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐶:(0...𝑀)⟶(0...𝑁))
10 0zd 12475 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 0 ∈ ℤ)
11 fzp1ss 13470 . . . . . . . . . . . . . 14 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
1210, 11syl 17 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → ((0 + 1)...𝑀) ⊆ (0...𝑀))
13 id 22 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (1...𝑀))
14 1e0p1 12625 . . . . . . . . . . . . . . 15 1 = (0 + 1)
1514oveq1i 7351 . . . . . . . . . . . . . 14 (1...𝑀) = ((0 + 1)...𝑀)
1613, 15eleqtrdi 2841 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
1712, 16sseldd 3930 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
1817adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
199, 18ffvelcdmd 7013 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
2019elfzelzd 13420 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ ℤ)
217, 20zsubcld 12577 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐶𝑗)) ∈ ℤ)
2221adantr 480 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ ℤ)
2320zred 12572 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶𝑗) ∈ ℝ)
2423adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐶𝑗) ∈ ℝ)
256zred 12572 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 𝑃 ∈ ℝ)
26 simpr 484 . . . . . . . . 9 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ¬ 𝑃 < (𝐶𝑗))
2724, 25, 26nltled 11258 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐶𝑗) ≤ 𝑃)
2825, 24subge0d 11702 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ≤ (𝑃 − (𝐶𝑗)) ↔ (𝐶𝑗) ≤ 𝑃))
2927, 28mpbird 257 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ≤ (𝑃 − (𝐶𝑗)))
30 elfzle1 13422 . . . . . . . . . 10 ((𝐶𝑗) ∈ (0...𝑁) → 0 ≤ (𝐶𝑗))
3119, 30syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → 0 ≤ (𝐶𝑗))
3231adantr 480 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → 0 ≤ (𝐶𝑗))
3325, 24subge02d 11704 . . . . . . . 8 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (0 ≤ (𝐶𝑗) ↔ (𝑃 − (𝐶𝑗)) ≤ 𝑃))
3432, 33mpbid 232 . . . . . . 7 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ≤ 𝑃)
353, 6, 22, 29, 34elfzd 13410 . . . . . 6 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ (0...𝑃))
36 permnn 14228 . . . . . 6 ((𝑃 − (𝐶𝑗)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℕ)
3735, 36syl 17 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℕ)
3837nnzd 12490 . . . 4 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) ∈ ℤ)
39 etransclem7.j . . . . . . . . 9 (𝜑𝐽 ∈ (0...𝑀))
4039elfzelzd 13420 . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
4140adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
42 elfzelz 13419 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
4342adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℤ)
4441, 43zsubcld 12577 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐽𝑗) ∈ ℤ)
4544adantr 480 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝐽𝑗) ∈ ℤ)
46 elnn0z 12476 . . . . . 6 ((𝑃 − (𝐶𝑗)) ∈ ℕ0 ↔ ((𝑃 − (𝐶𝑗)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶𝑗))))
4722, 29, 46sylanbrc 583 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (𝑃 − (𝐶𝑗)) ∈ ℕ0)
48 zexpcl 13978 . . . . 5 (((𝐽𝑗) ∈ ℤ ∧ (𝑃 − (𝐶𝑗)) ∈ ℕ0) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) ∈ ℤ)
4945, 47, 48syl2anc 584 . . . 4 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))) ∈ ℤ)
5038, 49zmulcld 12578 . . 3 (((𝜑𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶𝑗)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))) ∈ ℤ)
512, 50ifclda 4506 . 2 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
521, 51fprodzcl 15856 1 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2111  wss 3897  ifcif 4470   class class class wbr 5086  wf 6472  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  cn 12120  0cn0 12376  cz 12463  ...cfz 13402  cexp 13963  !cfa 14175  cprod 15805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-prod 15806
This theorem is referenced by:  etransclem15  46287  etransclem28  46300
  Copyright terms: Public domain W3C validator