Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt28 Structured version   Visualization version   GIF version

Theorem metakunt28 39659
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt28.1 (𝜑𝑀 ∈ ℕ)
metakunt28.2 (𝜑𝐼 ∈ ℕ)
metakunt28.3 (𝜑𝐼𝑀)
metakunt28.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt28.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt28.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt28.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt28.8 (𝜑 → ¬ 𝑋 < 𝐼)
Assertion
Ref Expression
metakunt28 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
Distinct variable groups:   𝑧,𝐼   𝑥,𝑀   𝑧,𝑀   𝑥,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt28
StepHypRef Expression
1 metakunt28.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . . 4 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 metakunt28.7 . . . . . . . 8 (𝜑 → ¬ 𝑋 = 𝐼)
43adantr 485 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 = 𝐼)
5 simpr 489 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
65eqeq1d 2761 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
76notbid 322 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 = 𝐼 ↔ ¬ 𝑋 = 𝐼))
84, 7mpbird 260 . . . . . 6 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 = 𝐼)
98iffalsed 4424 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))
10 metakunt28.8 . . . . . . . . 9 (𝜑 → ¬ 𝑋 < 𝐼)
1110adantr 485 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 < 𝐼)
125breq1d 5035 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
1312notbid 322 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 < 𝐼 ↔ ¬ 𝑋 < 𝐼))
1411, 13mpbird 260 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 < 𝐼)
1514iffalsed 4424 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = (𝑥 − 1))
165oveq1d 7158 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥 − 1) = (𝑋 − 1))
1715, 16eqtrd 2794 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = (𝑋 − 1))
189, 17eqtrd 2794 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = (𝑋 − 1))
19 metakunt28.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
2019elfzelzd 12942 . . . . 5 (𝜑𝑋 ∈ ℤ)
21 1zzd 12037 . . . . 5 (𝜑 → 1 ∈ ℤ)
2220, 21zsubcld 12116 . . . 4 (𝜑 → (𝑋 − 1) ∈ ℤ)
232, 18, 19, 22fvmptd 6759 . . 3 (𝜑 → (𝐴𝑋) = (𝑋 − 1))
2423fveq2d 6655 . 2 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝐵‘(𝑋 − 1)))
25 metakunt28.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
2625a1i 11 . . 3 (𝜑𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))))
2722zred 12111 . . . . . . . . 9 (𝜑 → (𝑋 − 1) ∈ ℝ)
2820zred 12111 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
29 metakunt28.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
3029nnred 11674 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
31 1rp 12419 . . . . . . . . . . . 12 1 ∈ ℝ+
3231a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ+)
3328, 32ltsubrpd 12489 . . . . . . . . . 10 (𝜑 → (𝑋 − 1) < 𝑋)
34 elfzle2 12945 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
3519, 34syl 17 . . . . . . . . . 10 (𝜑𝑋𝑀)
3627, 28, 30, 33, 35ltletrd 10823 . . . . . . . . 9 (𝜑 → (𝑋 − 1) < 𝑀)
3727, 36ltned 10799 . . . . . . . 8 (𝜑 → (𝑋 − 1) ≠ 𝑀)
3837adantr 485 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (𝑋 − 1) ≠ 𝑀)
3938neneqd 2954 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ¬ (𝑋 − 1) = 𝑀)
40 simpr 489 . . . . . . . 8 ((𝜑𝑧 = (𝑋 − 1)) → 𝑧 = (𝑋 − 1))
4140eqeq1d 2761 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 = 𝑀 ↔ (𝑋 − 1) = 𝑀))
4241notbid 322 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → (¬ 𝑧 = 𝑀 ↔ ¬ (𝑋 − 1) = 𝑀))
4339, 42mpbird 260 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → ¬ 𝑧 = 𝑀)
4443iffalsed 4424 . . . 4 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))
453neqned 2956 . . . . . . . . . . 11 (𝜑𝑋𝐼)
46 metakunt28.2 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℕ)
4746nnred 11674 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℝ)
4847, 28, 10nltled 10813 . . . . . . . . . . . 12 (𝜑𝐼𝑋)
4947, 28, 48leltned 10816 . . . . . . . . . . 11 (𝜑 → (𝐼 < 𝑋𝑋𝐼))
5045, 49mpbird 260 . . . . . . . . . 10 (𝜑𝐼 < 𝑋)
5146nnzd 12110 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℤ)
5251, 20zltlem1d 39531 . . . . . . . . . 10 (𝜑 → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5350, 52mpbid 235 . . . . . . . . 9 (𝜑𝐼 ≤ (𝑋 − 1))
5447, 27lenltd 10809 . . . . . . . . 9 (𝜑 → (𝐼 ≤ (𝑋 − 1) ↔ ¬ (𝑋 − 1) < 𝐼))
5553, 54mpbid 235 . . . . . . . 8 (𝜑 → ¬ (𝑋 − 1) < 𝐼)
5655adantr 485 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → ¬ (𝑋 − 1) < 𝐼)
5740breq1d 5035 . . . . . . . 8 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 < 𝐼 ↔ (𝑋 − 1) < 𝐼))
5857notbid 322 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (¬ 𝑧 < 𝐼 ↔ ¬ (𝑋 − 1) < 𝐼))
5956, 58mpbird 260 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ¬ 𝑧 < 𝐼)
6059iffalsed 4424 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑧 + (1 − 𝐼)))
6140oveq1d 7158 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 + (1 − 𝐼)) = ((𝑋 − 1) + (1 − 𝐼)))
6220zcnd 12112 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
63 1cnd 10659 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
6446nncnd 11675 . . . . . . . 8 (𝜑𝐼 ∈ ℂ)
6562, 63, 64npncand 11044 . . . . . . 7 (𝜑 → ((𝑋 − 1) + (1 − 𝐼)) = (𝑋𝐼))
6665adantr 485 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ((𝑋 − 1) + (1 − 𝐼)) = (𝑋𝐼))
6761, 66eqtrd 2794 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 + (1 − 𝐼)) = (𝑋𝐼))
6860, 67eqtrd 2794 . . . 4 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑋𝐼))
6944, 68eqtrd 2794 . . 3 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = (𝑋𝐼))
7029nnzd 12110 . . . 4 (𝜑𝑀 ∈ ℤ)
71 1red 10665 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7246nnge1d 11707 . . . . . 6 (𝜑 → 1 ≤ 𝐼)
7371, 47, 28, 72, 50lelttrd 10821 . . . . 5 (𝜑 → 1 < 𝑋)
7421, 20zltlem1d 39531 . . . . 5 (𝜑 → (1 < 𝑋 ↔ 1 ≤ (𝑋 − 1)))
7573, 74mpbid 235 . . . 4 (𝜑 → 1 ≤ (𝑋 − 1))
7628, 71resubcld 11091 . . . . 5 (𝜑 → (𝑋 − 1) ∈ ℝ)
77 0le1 11186 . . . . . . 7 0 ≤ 1
7877a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
7928, 71subge02d 11255 . . . . . 6 (𝜑 → (0 ≤ 1 ↔ (𝑋 − 1) ≤ 𝑋))
8078, 79mpbid 235 . . . . 5 (𝜑 → (𝑋 − 1) ≤ 𝑋)
8176, 28, 30, 80, 35letrd 10820 . . . 4 (𝜑 → (𝑋 − 1) ≤ 𝑀)
8221, 70, 22, 75, 81elfzd 12932 . . 3 (𝜑 → (𝑋 − 1) ∈ (1...𝑀))
8320, 51zsubcld 12116 . . 3 (𝜑 → (𝑋𝐼) ∈ ℤ)
8426, 69, 82, 83fvmptd 6759 . 2 (𝜑 → (𝐵‘(𝑋 − 1)) = (𝑋𝐼))
8524, 84eqtrd 2794 1 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400   = wceq 1539  wcel 2112  wne 2949  ifcif 4413   class class class wbr 5025  cmpt 5105  cfv 6328  (class class class)co 7143  0cc0 10560  1c1 10561   + caddc 10563   < clt 10698  cle 10699  cmin 10893  cn 11659  cz 12005  +crp 12415  ...cfz 12924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-fz 12925
This theorem is referenced by:  metakunt30  39661
  Copyright terms: Public domain W3C validator