Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt28 Structured version   Visualization version   GIF version

Theorem metakunt28 41098
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt28.1 (𝜑𝑀 ∈ ℕ)
metakunt28.2 (𝜑𝐼 ∈ ℕ)
metakunt28.3 (𝜑𝐼𝑀)
metakunt28.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt28.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt28.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt28.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt28.8 (𝜑 → ¬ 𝑋 < 𝐼)
Assertion
Ref Expression
metakunt28 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
Distinct variable groups:   𝑧,𝐼   𝑥,𝑀   𝑧,𝑀   𝑥,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt28
StepHypRef Expression
1 metakunt28.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . . 4 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 metakunt28.7 . . . . . . . 8 (𝜑 → ¬ 𝑋 = 𝐼)
43adantr 481 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 = 𝐼)
5 simpr 485 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
65eqeq1d 2734 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
76notbid 317 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 = 𝐼 ↔ ¬ 𝑋 = 𝐼))
84, 7mpbird 256 . . . . . 6 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 = 𝐼)
98iffalsed 4539 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))
10 metakunt28.8 . . . . . . . . 9 (𝜑 → ¬ 𝑋 < 𝐼)
1110adantr 481 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 < 𝐼)
125breq1d 5158 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
1312notbid 317 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 < 𝐼 ↔ ¬ 𝑋 < 𝐼))
1411, 13mpbird 256 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 < 𝐼)
1514iffalsed 4539 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = (𝑥 − 1))
165oveq1d 7426 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥 − 1) = (𝑋 − 1))
1715, 16eqtrd 2772 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = (𝑋 − 1))
189, 17eqtrd 2772 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = (𝑋 − 1))
19 metakunt28.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
2019elfzelzd 13504 . . . . 5 (𝜑𝑋 ∈ ℤ)
21 1zzd 12595 . . . . 5 (𝜑 → 1 ∈ ℤ)
2220, 21zsubcld 12673 . . . 4 (𝜑 → (𝑋 − 1) ∈ ℤ)
232, 18, 19, 22fvmptd 7005 . . 3 (𝜑 → (𝐴𝑋) = (𝑋 − 1))
2423fveq2d 6895 . 2 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝐵‘(𝑋 − 1)))
25 metakunt28.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
2625a1i 11 . . 3 (𝜑𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))))
2722zred 12668 . . . . . . . . 9 (𝜑 → (𝑋 − 1) ∈ ℝ)
2820zred 12668 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
29 metakunt28.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
3029nnred 12229 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
31 1rp 12980 . . . . . . . . . . . 12 1 ∈ ℝ+
3231a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ+)
3328, 32ltsubrpd 13050 . . . . . . . . . 10 (𝜑 → (𝑋 − 1) < 𝑋)
34 elfzle2 13507 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
3519, 34syl 17 . . . . . . . . . 10 (𝜑𝑋𝑀)
3627, 28, 30, 33, 35ltletrd 11376 . . . . . . . . 9 (𝜑 → (𝑋 − 1) < 𝑀)
3727, 36ltned 11352 . . . . . . . 8 (𝜑 → (𝑋 − 1) ≠ 𝑀)
3837adantr 481 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (𝑋 − 1) ≠ 𝑀)
3938neneqd 2945 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ¬ (𝑋 − 1) = 𝑀)
40 simpr 485 . . . . . . . 8 ((𝜑𝑧 = (𝑋 − 1)) → 𝑧 = (𝑋 − 1))
4140eqeq1d 2734 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 = 𝑀 ↔ (𝑋 − 1) = 𝑀))
4241notbid 317 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → (¬ 𝑧 = 𝑀 ↔ ¬ (𝑋 − 1) = 𝑀))
4339, 42mpbird 256 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → ¬ 𝑧 = 𝑀)
4443iffalsed 4539 . . . 4 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))
453neqned 2947 . . . . . . . . . . 11 (𝜑𝑋𝐼)
46 metakunt28.2 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℕ)
4746nnred 12229 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℝ)
4847, 28, 10nltled 11366 . . . . . . . . . . . 12 (𝜑𝐼𝑋)
4947, 28, 48leltned 11369 . . . . . . . . . . 11 (𝜑 → (𝐼 < 𝑋𝑋𝐼))
5045, 49mpbird 256 . . . . . . . . . 10 (𝜑𝐼 < 𝑋)
5146nnzd 12587 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℤ)
5251, 20zltlem1d 40930 . . . . . . . . . 10 (𝜑 → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5350, 52mpbid 231 . . . . . . . . 9 (𝜑𝐼 ≤ (𝑋 − 1))
5447, 27lenltd 11362 . . . . . . . . 9 (𝜑 → (𝐼 ≤ (𝑋 − 1) ↔ ¬ (𝑋 − 1) < 𝐼))
5553, 54mpbid 231 . . . . . . . 8 (𝜑 → ¬ (𝑋 − 1) < 𝐼)
5655adantr 481 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → ¬ (𝑋 − 1) < 𝐼)
5740breq1d 5158 . . . . . . . 8 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 < 𝐼 ↔ (𝑋 − 1) < 𝐼))
5857notbid 317 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (¬ 𝑧 < 𝐼 ↔ ¬ (𝑋 − 1) < 𝐼))
5956, 58mpbird 256 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ¬ 𝑧 < 𝐼)
6059iffalsed 4539 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑧 + (1 − 𝐼)))
6140oveq1d 7426 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 + (1 − 𝐼)) = ((𝑋 − 1) + (1 − 𝐼)))
6220zcnd 12669 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
63 1cnd 11211 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
6446nncnd 12230 . . . . . . . 8 (𝜑𝐼 ∈ ℂ)
6562, 63, 64npncand 11597 . . . . . . 7 (𝜑 → ((𝑋 − 1) + (1 − 𝐼)) = (𝑋𝐼))
6665adantr 481 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ((𝑋 − 1) + (1 − 𝐼)) = (𝑋𝐼))
6761, 66eqtrd 2772 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 + (1 − 𝐼)) = (𝑋𝐼))
6860, 67eqtrd 2772 . . . 4 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑋𝐼))
6944, 68eqtrd 2772 . . 3 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = (𝑋𝐼))
7029nnzd 12587 . . . 4 (𝜑𝑀 ∈ ℤ)
71 1red 11217 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7246nnge1d 12262 . . . . . 6 (𝜑 → 1 ≤ 𝐼)
7371, 47, 28, 72, 50lelttrd 11374 . . . . 5 (𝜑 → 1 < 𝑋)
7421, 20zltlem1d 40930 . . . . 5 (𝜑 → (1 < 𝑋 ↔ 1 ≤ (𝑋 − 1)))
7573, 74mpbid 231 . . . 4 (𝜑 → 1 ≤ (𝑋 − 1))
7628, 71resubcld 11644 . . . . 5 (𝜑 → (𝑋 − 1) ∈ ℝ)
77 0le1 11739 . . . . . . 7 0 ≤ 1
7877a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
7928, 71subge02d 11808 . . . . . 6 (𝜑 → (0 ≤ 1 ↔ (𝑋 − 1) ≤ 𝑋))
8078, 79mpbid 231 . . . . 5 (𝜑 → (𝑋 − 1) ≤ 𝑋)
8176, 28, 30, 80, 35letrd 11373 . . . 4 (𝜑 → (𝑋 − 1) ≤ 𝑀)
8221, 70, 22, 75, 81elfzd 13494 . . 3 (𝜑 → (𝑋 − 1) ∈ (1...𝑀))
8320, 51zsubcld 12673 . . 3 (𝜑 → (𝑋𝐼) ∈ ℤ)
8426, 69, 82, 83fvmptd 7005 . 2 (𝜑 → (𝐵‘(𝑋 − 1)) = (𝑋𝐼))
8524, 84eqtrd 2772 1 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  ifcif 4528   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7411  0cc0 11112  1c1 11113   + caddc 11115   < clt 11250  cle 11251  cmin 11446  cn 12214  cz 12560  +crp 12976  ...cfz 13486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-rp 12977  df-fz 13487
This theorem is referenced by:  metakunt30  41100
  Copyright terms: Public domain W3C validator