Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt28 Structured version   Visualization version   GIF version

Theorem metakunt28 42189
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt28.1 (𝜑𝑀 ∈ ℕ)
metakunt28.2 (𝜑𝐼 ∈ ℕ)
metakunt28.3 (𝜑𝐼𝑀)
metakunt28.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt28.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt28.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt28.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt28.8 (𝜑 → ¬ 𝑋 < 𝐼)
Assertion
Ref Expression
metakunt28 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
Distinct variable groups:   𝑧,𝐼   𝑥,𝑀   𝑧,𝑀   𝑥,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt28
StepHypRef Expression
1 metakunt28.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . . 4 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 metakunt28.7 . . . . . . . 8 (𝜑 → ¬ 𝑋 = 𝐼)
43adantr 480 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 = 𝐼)
5 simpr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
65eqeq1d 2742 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
76notbid 318 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 = 𝐼 ↔ ¬ 𝑋 = 𝐼))
84, 7mpbird 257 . . . . . 6 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 = 𝐼)
98iffalsed 4559 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))
10 metakunt28.8 . . . . . . . . 9 (𝜑 → ¬ 𝑋 < 𝐼)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 < 𝐼)
125breq1d 5176 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
1312notbid 318 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 < 𝐼 ↔ ¬ 𝑋 < 𝐼))
1411, 13mpbird 257 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 < 𝐼)
1514iffalsed 4559 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = (𝑥 − 1))
165oveq1d 7463 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥 − 1) = (𝑋 − 1))
1715, 16eqtrd 2780 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = (𝑋 − 1))
189, 17eqtrd 2780 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = (𝑋 − 1))
19 metakunt28.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
2019elfzelzd 13585 . . . . 5 (𝜑𝑋 ∈ ℤ)
21 1zzd 12674 . . . . 5 (𝜑 → 1 ∈ ℤ)
2220, 21zsubcld 12752 . . . 4 (𝜑 → (𝑋 − 1) ∈ ℤ)
232, 18, 19, 22fvmptd 7036 . . 3 (𝜑 → (𝐴𝑋) = (𝑋 − 1))
2423fveq2d 6924 . 2 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝐵‘(𝑋 − 1)))
25 metakunt28.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
2625a1i 11 . . 3 (𝜑𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))))
2722zred 12747 . . . . . . . . 9 (𝜑 → (𝑋 − 1) ∈ ℝ)
2820zred 12747 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
29 metakunt28.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
3029nnred 12308 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
31 1rp 13061 . . . . . . . . . . . 12 1 ∈ ℝ+
3231a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ+)
3328, 32ltsubrpd 13131 . . . . . . . . . 10 (𝜑 → (𝑋 − 1) < 𝑋)
34 elfzle2 13588 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
3519, 34syl 17 . . . . . . . . . 10 (𝜑𝑋𝑀)
3627, 28, 30, 33, 35ltletrd 11450 . . . . . . . . 9 (𝜑 → (𝑋 − 1) < 𝑀)
3727, 36ltned 11426 . . . . . . . 8 (𝜑 → (𝑋 − 1) ≠ 𝑀)
3837adantr 480 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (𝑋 − 1) ≠ 𝑀)
3938neneqd 2951 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ¬ (𝑋 − 1) = 𝑀)
40 simpr 484 . . . . . . . 8 ((𝜑𝑧 = (𝑋 − 1)) → 𝑧 = (𝑋 − 1))
4140eqeq1d 2742 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 = 𝑀 ↔ (𝑋 − 1) = 𝑀))
4241notbid 318 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → (¬ 𝑧 = 𝑀 ↔ ¬ (𝑋 − 1) = 𝑀))
4339, 42mpbird 257 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → ¬ 𝑧 = 𝑀)
4443iffalsed 4559 . . . 4 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))
453neqned 2953 . . . . . . . . . . 11 (𝜑𝑋𝐼)
46 metakunt28.2 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℕ)
4746nnred 12308 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℝ)
4847, 28, 10nltled 11440 . . . . . . . . . . . 12 (𝜑𝐼𝑋)
4947, 28, 48leltned 11443 . . . . . . . . . . 11 (𝜑 → (𝐼 < 𝑋𝑋𝐼))
5045, 49mpbird 257 . . . . . . . . . 10 (𝜑𝐼 < 𝑋)
5146nnzd 12666 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℤ)
5251, 20zltlem1d 41935 . . . . . . . . . 10 (𝜑 → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5350, 52mpbid 232 . . . . . . . . 9 (𝜑𝐼 ≤ (𝑋 − 1))
5447, 27lenltd 11436 . . . . . . . . 9 (𝜑 → (𝐼 ≤ (𝑋 − 1) ↔ ¬ (𝑋 − 1) < 𝐼))
5553, 54mpbid 232 . . . . . . . 8 (𝜑 → ¬ (𝑋 − 1) < 𝐼)
5655adantr 480 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → ¬ (𝑋 − 1) < 𝐼)
5740breq1d 5176 . . . . . . . 8 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 < 𝐼 ↔ (𝑋 − 1) < 𝐼))
5857notbid 318 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (¬ 𝑧 < 𝐼 ↔ ¬ (𝑋 − 1) < 𝐼))
5956, 58mpbird 257 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ¬ 𝑧 < 𝐼)
6059iffalsed 4559 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑧 + (1 − 𝐼)))
6140oveq1d 7463 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 + (1 − 𝐼)) = ((𝑋 − 1) + (1 − 𝐼)))
6220zcnd 12748 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
63 1cnd 11285 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
6446nncnd 12309 . . . . . . . 8 (𝜑𝐼 ∈ ℂ)
6562, 63, 64npncand 11671 . . . . . . 7 (𝜑 → ((𝑋 − 1) + (1 − 𝐼)) = (𝑋𝐼))
6665adantr 480 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ((𝑋 − 1) + (1 − 𝐼)) = (𝑋𝐼))
6761, 66eqtrd 2780 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 + (1 − 𝐼)) = (𝑋𝐼))
6860, 67eqtrd 2780 . . . 4 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑋𝐼))
6944, 68eqtrd 2780 . . 3 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = (𝑋𝐼))
7029nnzd 12666 . . . 4 (𝜑𝑀 ∈ ℤ)
71 1red 11291 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7246nnge1d 12341 . . . . . 6 (𝜑 → 1 ≤ 𝐼)
7371, 47, 28, 72, 50lelttrd 11448 . . . . 5 (𝜑 → 1 < 𝑋)
7421, 20zltlem1d 41935 . . . . 5 (𝜑 → (1 < 𝑋 ↔ 1 ≤ (𝑋 − 1)))
7573, 74mpbid 232 . . . 4 (𝜑 → 1 ≤ (𝑋 − 1))
7628, 71resubcld 11718 . . . . 5 (𝜑 → (𝑋 − 1) ∈ ℝ)
77 0le1 11813 . . . . . . 7 0 ≤ 1
7877a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
7928, 71subge02d 11882 . . . . . 6 (𝜑 → (0 ≤ 1 ↔ (𝑋 − 1) ≤ 𝑋))
8078, 79mpbid 232 . . . . 5 (𝜑 → (𝑋 − 1) ≤ 𝑋)
8176, 28, 30, 80, 35letrd 11447 . . . 4 (𝜑 → (𝑋 − 1) ≤ 𝑀)
8221, 70, 22, 75, 81elfzd 13575 . . 3 (𝜑 → (𝑋 − 1) ∈ (1...𝑀))
8320, 51zsubcld 12752 . . 3 (𝜑 → (𝑋𝐼) ∈ ℤ)
8426, 69, 82, 83fvmptd 7036 . 2 (𝜑 → (𝐵‘(𝑋 − 1)) = (𝑋𝐼))
8524, 84eqtrd 2780 1 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  cz 12639  +crp 13057  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568
This theorem is referenced by:  metakunt30  42191
  Copyright terms: Public domain W3C validator