Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt28 Structured version   Visualization version   GIF version

Theorem metakunt28 40080
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt28.1 (𝜑𝑀 ∈ ℕ)
metakunt28.2 (𝜑𝐼 ∈ ℕ)
metakunt28.3 (𝜑𝐼𝑀)
metakunt28.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt28.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt28.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt28.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt28.8 (𝜑 → ¬ 𝑋 < 𝐼)
Assertion
Ref Expression
metakunt28 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
Distinct variable groups:   𝑧,𝐼   𝑥,𝑀   𝑧,𝑀   𝑥,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt28
StepHypRef Expression
1 metakunt28.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . . 4 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 metakunt28.7 . . . . . . . 8 (𝜑 → ¬ 𝑋 = 𝐼)
43adantr 480 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 = 𝐼)
5 simpr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
65eqeq1d 2740 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
76notbid 317 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 = 𝐼 ↔ ¬ 𝑋 = 𝐼))
84, 7mpbird 256 . . . . . 6 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 = 𝐼)
98iffalsed 4467 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))
10 metakunt28.8 . . . . . . . . 9 (𝜑 → ¬ 𝑋 < 𝐼)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 < 𝐼)
125breq1d 5080 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
1312notbid 317 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 < 𝐼 ↔ ¬ 𝑋 < 𝐼))
1411, 13mpbird 256 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 < 𝐼)
1514iffalsed 4467 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = (𝑥 − 1))
165oveq1d 7270 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥 − 1) = (𝑋 − 1))
1715, 16eqtrd 2778 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = (𝑋 − 1))
189, 17eqtrd 2778 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = (𝑋 − 1))
19 metakunt28.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
2019elfzelzd 13186 . . . . 5 (𝜑𝑋 ∈ ℤ)
21 1zzd 12281 . . . . 5 (𝜑 → 1 ∈ ℤ)
2220, 21zsubcld 12360 . . . 4 (𝜑 → (𝑋 − 1) ∈ ℤ)
232, 18, 19, 22fvmptd 6864 . . 3 (𝜑 → (𝐴𝑋) = (𝑋 − 1))
2423fveq2d 6760 . 2 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝐵‘(𝑋 − 1)))
25 metakunt28.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
2625a1i 11 . . 3 (𝜑𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))))
2722zred 12355 . . . . . . . . 9 (𝜑 → (𝑋 − 1) ∈ ℝ)
2820zred 12355 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
29 metakunt28.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
3029nnred 11918 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
31 1rp 12663 . . . . . . . . . . . 12 1 ∈ ℝ+
3231a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ+)
3328, 32ltsubrpd 12733 . . . . . . . . . 10 (𝜑 → (𝑋 − 1) < 𝑋)
34 elfzle2 13189 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
3519, 34syl 17 . . . . . . . . . 10 (𝜑𝑋𝑀)
3627, 28, 30, 33, 35ltletrd 11065 . . . . . . . . 9 (𝜑 → (𝑋 − 1) < 𝑀)
3727, 36ltned 11041 . . . . . . . 8 (𝜑 → (𝑋 − 1) ≠ 𝑀)
3837adantr 480 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (𝑋 − 1) ≠ 𝑀)
3938neneqd 2947 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ¬ (𝑋 − 1) = 𝑀)
40 simpr 484 . . . . . . . 8 ((𝜑𝑧 = (𝑋 − 1)) → 𝑧 = (𝑋 − 1))
4140eqeq1d 2740 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 = 𝑀 ↔ (𝑋 − 1) = 𝑀))
4241notbid 317 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → (¬ 𝑧 = 𝑀 ↔ ¬ (𝑋 − 1) = 𝑀))
4339, 42mpbird 256 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → ¬ 𝑧 = 𝑀)
4443iffalsed 4467 . . . 4 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))
453neqned 2949 . . . . . . . . . . 11 (𝜑𝑋𝐼)
46 metakunt28.2 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℕ)
4746nnred 11918 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℝ)
4847, 28, 10nltled 11055 . . . . . . . . . . . 12 (𝜑𝐼𝑋)
4947, 28, 48leltned 11058 . . . . . . . . . . 11 (𝜑 → (𝐼 < 𝑋𝑋𝐼))
5045, 49mpbird 256 . . . . . . . . . 10 (𝜑𝐼 < 𝑋)
5146nnzd 12354 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℤ)
5251, 20zltlem1d 39915 . . . . . . . . . 10 (𝜑 → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5350, 52mpbid 231 . . . . . . . . 9 (𝜑𝐼 ≤ (𝑋 − 1))
5447, 27lenltd 11051 . . . . . . . . 9 (𝜑 → (𝐼 ≤ (𝑋 − 1) ↔ ¬ (𝑋 − 1) < 𝐼))
5553, 54mpbid 231 . . . . . . . 8 (𝜑 → ¬ (𝑋 − 1) < 𝐼)
5655adantr 480 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → ¬ (𝑋 − 1) < 𝐼)
5740breq1d 5080 . . . . . . . 8 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 < 𝐼 ↔ (𝑋 − 1) < 𝐼))
5857notbid 317 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (¬ 𝑧 < 𝐼 ↔ ¬ (𝑋 − 1) < 𝐼))
5956, 58mpbird 256 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ¬ 𝑧 < 𝐼)
6059iffalsed 4467 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑧 + (1 − 𝐼)))
6140oveq1d 7270 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 + (1 − 𝐼)) = ((𝑋 − 1) + (1 − 𝐼)))
6220zcnd 12356 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
63 1cnd 10901 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
6446nncnd 11919 . . . . . . . 8 (𝜑𝐼 ∈ ℂ)
6562, 63, 64npncand 11286 . . . . . . 7 (𝜑 → ((𝑋 − 1) + (1 − 𝐼)) = (𝑋𝐼))
6665adantr 480 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ((𝑋 − 1) + (1 − 𝐼)) = (𝑋𝐼))
6761, 66eqtrd 2778 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 + (1 − 𝐼)) = (𝑋𝐼))
6860, 67eqtrd 2778 . . . 4 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑋𝐼))
6944, 68eqtrd 2778 . . 3 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = (𝑋𝐼))
7029nnzd 12354 . . . 4 (𝜑𝑀 ∈ ℤ)
71 1red 10907 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7246nnge1d 11951 . . . . . 6 (𝜑 → 1 ≤ 𝐼)
7371, 47, 28, 72, 50lelttrd 11063 . . . . 5 (𝜑 → 1 < 𝑋)
7421, 20zltlem1d 39915 . . . . 5 (𝜑 → (1 < 𝑋 ↔ 1 ≤ (𝑋 − 1)))
7573, 74mpbid 231 . . . 4 (𝜑 → 1 ≤ (𝑋 − 1))
7628, 71resubcld 11333 . . . . 5 (𝜑 → (𝑋 − 1) ∈ ℝ)
77 0le1 11428 . . . . . . 7 0 ≤ 1
7877a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
7928, 71subge02d 11497 . . . . . 6 (𝜑 → (0 ≤ 1 ↔ (𝑋 − 1) ≤ 𝑋))
8078, 79mpbid 231 . . . . 5 (𝜑 → (𝑋 − 1) ≤ 𝑋)
8176, 28, 30, 80, 35letrd 11062 . . . 4 (𝜑 → (𝑋 − 1) ≤ 𝑀)
8221, 70, 22, 75, 81elfzd 13176 . . 3 (𝜑 → (𝑋 − 1) ∈ (1...𝑀))
8320, 51zsubcld 12360 . . 3 (𝜑 → (𝑋𝐼) ∈ ℤ)
8426, 69, 82, 83fvmptd 6864 . 2 (𝜑 → (𝐵‘(𝑋 − 1)) = (𝑋𝐼))
8524, 84eqtrd 2778 1 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  cz 12249  +crp 12659  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169
This theorem is referenced by:  metakunt30  40082
  Copyright terms: Public domain W3C validator