Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt28 Structured version   Visualization version   GIF version

Theorem metakunt28 42213
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt28.1 (𝜑𝑀 ∈ ℕ)
metakunt28.2 (𝜑𝐼 ∈ ℕ)
metakunt28.3 (𝜑𝐼𝑀)
metakunt28.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt28.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt28.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt28.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt28.8 (𝜑 → ¬ 𝑋 < 𝐼)
Assertion
Ref Expression
metakunt28 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
Distinct variable groups:   𝑧,𝐼   𝑥,𝑀   𝑧,𝑀   𝑥,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt28
StepHypRef Expression
1 metakunt28.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . . 4 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 metakunt28.7 . . . . . . . 8 (𝜑 → ¬ 𝑋 = 𝐼)
43adantr 480 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 = 𝐼)
5 simpr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
65eqeq1d 2736 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
76notbid 318 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 = 𝐼 ↔ ¬ 𝑋 = 𝐼))
84, 7mpbird 257 . . . . . 6 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 = 𝐼)
98iffalsed 4541 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))
10 metakunt28.8 . . . . . . . . 9 (𝜑 → ¬ 𝑋 < 𝐼)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 < 𝐼)
125breq1d 5157 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
1312notbid 318 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 < 𝐼 ↔ ¬ 𝑋 < 𝐼))
1411, 13mpbird 257 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 < 𝐼)
1514iffalsed 4541 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = (𝑥 − 1))
165oveq1d 7445 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥 − 1) = (𝑋 − 1))
1715, 16eqtrd 2774 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = (𝑋 − 1))
189, 17eqtrd 2774 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = (𝑋 − 1))
19 metakunt28.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
2019elfzelzd 13561 . . . . 5 (𝜑𝑋 ∈ ℤ)
21 1zzd 12645 . . . . 5 (𝜑 → 1 ∈ ℤ)
2220, 21zsubcld 12724 . . . 4 (𝜑 → (𝑋 − 1) ∈ ℤ)
232, 18, 19, 22fvmptd 7022 . . 3 (𝜑 → (𝐴𝑋) = (𝑋 − 1))
2423fveq2d 6910 . 2 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝐵‘(𝑋 − 1)))
25 metakunt28.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
2625a1i 11 . . 3 (𝜑𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))))
2722zred 12719 . . . . . . . . 9 (𝜑 → (𝑋 − 1) ∈ ℝ)
2820zred 12719 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
29 metakunt28.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
3029nnred 12278 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
31 1rp 13035 . . . . . . . . . . . 12 1 ∈ ℝ+
3231a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ+)
3328, 32ltsubrpd 13106 . . . . . . . . . 10 (𝜑 → (𝑋 − 1) < 𝑋)
34 elfzle2 13564 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
3519, 34syl 17 . . . . . . . . . 10 (𝜑𝑋𝑀)
3627, 28, 30, 33, 35ltletrd 11418 . . . . . . . . 9 (𝜑 → (𝑋 − 1) < 𝑀)
3727, 36ltned 11394 . . . . . . . 8 (𝜑 → (𝑋 − 1) ≠ 𝑀)
3837adantr 480 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (𝑋 − 1) ≠ 𝑀)
3938neneqd 2942 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ¬ (𝑋 − 1) = 𝑀)
40 simpr 484 . . . . . . . 8 ((𝜑𝑧 = (𝑋 − 1)) → 𝑧 = (𝑋 − 1))
4140eqeq1d 2736 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 = 𝑀 ↔ (𝑋 − 1) = 𝑀))
4241notbid 318 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → (¬ 𝑧 = 𝑀 ↔ ¬ (𝑋 − 1) = 𝑀))
4339, 42mpbird 257 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → ¬ 𝑧 = 𝑀)
4443iffalsed 4541 . . . 4 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))
453neqned 2944 . . . . . . . . . . 11 (𝜑𝑋𝐼)
46 metakunt28.2 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℕ)
4746nnred 12278 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℝ)
4847, 28, 10nltled 11408 . . . . . . . . . . . 12 (𝜑𝐼𝑋)
4947, 28, 48leltned 11411 . . . . . . . . . . 11 (𝜑 → (𝐼 < 𝑋𝑋𝐼))
5045, 49mpbird 257 . . . . . . . . . 10 (𝜑𝐼 < 𝑋)
5146nnzd 12637 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℤ)
5251, 20zltlem1d 12668 . . . . . . . . . 10 (𝜑 → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5350, 52mpbid 232 . . . . . . . . 9 (𝜑𝐼 ≤ (𝑋 − 1))
5447, 27lenltd 11404 . . . . . . . . 9 (𝜑 → (𝐼 ≤ (𝑋 − 1) ↔ ¬ (𝑋 − 1) < 𝐼))
5553, 54mpbid 232 . . . . . . . 8 (𝜑 → ¬ (𝑋 − 1) < 𝐼)
5655adantr 480 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → ¬ (𝑋 − 1) < 𝐼)
5740breq1d 5157 . . . . . . . 8 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 < 𝐼 ↔ (𝑋 − 1) < 𝐼))
5857notbid 318 . . . . . . 7 ((𝜑𝑧 = (𝑋 − 1)) → (¬ 𝑧 < 𝐼 ↔ ¬ (𝑋 − 1) < 𝐼))
5956, 58mpbird 257 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ¬ 𝑧 < 𝐼)
6059iffalsed 4541 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑧 + (1 − 𝐼)))
6140oveq1d 7445 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 + (1 − 𝐼)) = ((𝑋 − 1) + (1 − 𝐼)))
6220zcnd 12720 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
63 1cnd 11253 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
6446nncnd 12279 . . . . . . . 8 (𝜑𝐼 ∈ ℂ)
6562, 63, 64npncand 11641 . . . . . . 7 (𝜑 → ((𝑋 − 1) + (1 − 𝐼)) = (𝑋𝐼))
6665adantr 480 . . . . . 6 ((𝜑𝑧 = (𝑋 − 1)) → ((𝑋 − 1) + (1 − 𝐼)) = (𝑋𝐼))
6761, 66eqtrd 2774 . . . . 5 ((𝜑𝑧 = (𝑋 − 1)) → (𝑧 + (1 − 𝐼)) = (𝑋𝐼))
6860, 67eqtrd 2774 . . . 4 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑋𝐼))
6944, 68eqtrd 2774 . . 3 ((𝜑𝑧 = (𝑋 − 1)) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = (𝑋𝐼))
7029nnzd 12637 . . . 4 (𝜑𝑀 ∈ ℤ)
71 1red 11259 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7246nnge1d 12311 . . . . . 6 (𝜑 → 1 ≤ 𝐼)
7371, 47, 28, 72, 50lelttrd 11416 . . . . 5 (𝜑 → 1 < 𝑋)
7421, 20zltlem1d 12668 . . . . 5 (𝜑 → (1 < 𝑋 ↔ 1 ≤ (𝑋 − 1)))
7573, 74mpbid 232 . . . 4 (𝜑 → 1 ≤ (𝑋 − 1))
7628, 71resubcld 11688 . . . . 5 (𝜑 → (𝑋 − 1) ∈ ℝ)
77 0le1 11783 . . . . . . 7 0 ≤ 1
7877a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
7928, 71subge02d 11852 . . . . . 6 (𝜑 → (0 ≤ 1 ↔ (𝑋 − 1) ≤ 𝑋))
8078, 79mpbid 232 . . . . 5 (𝜑 → (𝑋 − 1) ≤ 𝑋)
8176, 28, 30, 80, 35letrd 11415 . . . 4 (𝜑 → (𝑋 − 1) ≤ 𝑀)
8221, 70, 22, 75, 81elfzd 13551 . . 3 (𝜑 → (𝑋 − 1) ∈ (1...𝑀))
8320, 51zsubcld 12724 . . 3 (𝜑 → (𝑋𝐼) ∈ ℤ)
8426, 69, 82, 83fvmptd 7022 . 2 (𝜑 → (𝐵‘(𝑋 − 1)) = (𝑋𝐼))
8524, 84eqtrd 2774 1 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  ifcif 4530   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cmin 11489  cn 12263  cz 12610  +crp 13031  ...cfz 13543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544
This theorem is referenced by:  metakunt30  42215
  Copyright terms: Public domain W3C validator