Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem10 Structured version   Visualization version   GIF version

Theorem etransclem10 44605
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem10.n (𝜑𝑃 ∈ ℕ)
etransclem10.m (𝜑𝑀 ∈ ℕ0)
etransclem10.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem10.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
etransclem10 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)

Proof of Theorem etransclem10
StepHypRef Expression
1 0zd 12520 . 2 ((𝜑 ∧ (𝑃 − 1) < (𝐶‘0)) → 0 ∈ ℤ)
2 0zd 12520 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
3 etransclem10.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
4 nnm1nn0 12463 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
53, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
65nn0zd 12534 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℤ)
7 etransclem10.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
8 etransclem10.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
9 nn0uz 12814 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
108, 9eleqtrdi 2842 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘0))
11 eluzfz1 13458 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
1210, 11syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ (0...𝑀))
137, 12ffvelcdmd 7041 . . . . . . . . . . 11 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
1413elfzelzd 13452 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ ℤ)
156, 14zsubcld 12621 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
162, 6, 153jca 1128 . . . . . . . 8 (𝜑 → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ))
1716adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ))
1814zred 12616 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ ℝ)
1918adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ∈ ℝ)
205nn0red 12483 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℝ)
2120adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ∈ ℝ)
22 simpr 485 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ¬ (𝑃 − 1) < (𝐶‘0))
2319, 21, 22nltled 11314 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ≤ (𝑃 − 1))
2421, 19subge0d 11754 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ↔ (𝐶‘0) ≤ (𝑃 − 1)))
2523, 24mpbird 256 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 ≤ ((𝑃 − 1) − (𝐶‘0)))
26 elfzle1 13454 . . . . . . . . . 10 ((𝐶‘0) ∈ (0...𝑁) → 0 ≤ (𝐶‘0))
2713, 26syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐶‘0))
2827adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 ≤ (𝐶‘0))
2921, 19subge02d 11756 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ≤ (𝐶‘0) ↔ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1)))
3028, 29mpbid 231 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))
3117, 25, 30jca32 516 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ) ∧ (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ∧ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))))
32 elfz2 13441 . . . . . 6 (((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)) ↔ ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ) ∧ (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ∧ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))))
3331, 32sylibr 233 . . . . 5 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)))
34 permnn 14236 . . . . 5 (((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℕ)
3533, 34syl 17 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℕ)
3635nnzd 12535 . . 3 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℤ)
37 etransclem10.j . . . . 5 (𝜑𝐽 ∈ ℤ)
3837adantr 481 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 𝐽 ∈ ℤ)
3915adantr 481 . . . . 5 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
40 elnn0z 12521 . . . . 5 (((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0 ↔ (((𝑃 − 1) − (𝐶‘0)) ∈ ℤ ∧ 0 ≤ ((𝑃 − 1) − (𝐶‘0))))
4139, 25, 40sylanbrc 583 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0)
42 zexpcl 13992 . . . 4 ((𝐽 ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) ∈ ℤ)
4338, 41, 42syl2anc 584 . . 3 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) ∈ ℤ)
4436, 43zmulcld 12622 . 2 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) ∈ ℤ)
451, 44ifclda 4526 1 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087  wcel 2106  ifcif 4491   class class class wbr 5110  wf 6497  cfv 6501  (class class class)co 7362  cr 11059  0cc0 11060  1c1 11061   · cmul 11065   < clt 11198  cle 11199  cmin 11394   / cdiv 11821  cn 12162  0cn0 12422  cz 12508  cuz 12772  ...cfz 13434  cexp 13977  !cfa 14183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-seq 13917  df-exp 13978  df-fac 14184  df-bc 14213
This theorem is referenced by:  etransclem25  44620  etransclem26  44621  etransclem35  44630  etransclem37  44632
  Copyright terms: Public domain W3C validator