Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem10 Structured version   Visualization version   GIF version

Theorem etransclem10 46273
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem10.n (𝜑𝑃 ∈ ℕ)
etransclem10.m (𝜑𝑀 ∈ ℕ0)
etransclem10.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem10.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
etransclem10 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)

Proof of Theorem etransclem10
StepHypRef Expression
1 0zd 12600 . 2 ((𝜑 ∧ (𝑃 − 1) < (𝐶‘0)) → 0 ∈ ℤ)
2 0zd 12600 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
3 etransclem10.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
4 nnm1nn0 12542 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
53, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
65nn0zd 12614 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℤ)
7 etransclem10.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
8 etransclem10.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
9 nn0uz 12894 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
108, 9eleqtrdi 2844 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘0))
11 eluzfz1 13548 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
1210, 11syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ (0...𝑀))
137, 12ffvelcdmd 7075 . . . . . . . . . . 11 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
1413elfzelzd 13542 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ ℤ)
156, 14zsubcld 12702 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
162, 6, 153jca 1128 . . . . . . . 8 (𝜑 → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ))
1716adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ))
1814zred 12697 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ ℝ)
1918adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ∈ ℝ)
205nn0red 12563 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℝ)
2120adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ∈ ℝ)
22 simpr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ¬ (𝑃 − 1) < (𝐶‘0))
2319, 21, 22nltled 11385 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ≤ (𝑃 − 1))
2421, 19subge0d 11827 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ↔ (𝐶‘0) ≤ (𝑃 − 1)))
2523, 24mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 ≤ ((𝑃 − 1) − (𝐶‘0)))
26 elfzle1 13544 . . . . . . . . . 10 ((𝐶‘0) ∈ (0...𝑁) → 0 ≤ (𝐶‘0))
2713, 26syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐶‘0))
2827adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 ≤ (𝐶‘0))
2921, 19subge02d 11829 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ≤ (𝐶‘0) ↔ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1)))
3028, 29mpbid 232 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))
3117, 25, 30jca32 515 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ) ∧ (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ∧ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))))
32 elfz2 13531 . . . . . 6 (((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)) ↔ ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ) ∧ (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ∧ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))))
3331, 32sylibr 234 . . . . 5 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)))
34 permnn 14344 . . . . 5 (((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℕ)
3533, 34syl 17 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℕ)
3635nnzd 12615 . . 3 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℤ)
37 etransclem10.j . . . . 5 (𝜑𝐽 ∈ ℤ)
3837adantr 480 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 𝐽 ∈ ℤ)
3915adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
40 elnn0z 12601 . . . . 5 (((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0 ↔ (((𝑃 − 1) − (𝐶‘0)) ∈ ℤ ∧ 0 ≤ ((𝑃 − 1) − (𝐶‘0))))
4139, 25, 40sylanbrc 583 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0)
42 zexpcl 14094 . . . 4 ((𝐽 ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) ∈ ℤ)
4338, 41, 42syl2anc 584 . . 3 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) ∈ ℤ)
4436, 43zmulcld 12703 . 2 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) ∈ ℤ)
451, 44ifclda 4536 1 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2108  ifcif 4500   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  cexp 14079  !cfa 14291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321
This theorem is referenced by:  etransclem25  46288  etransclem26  46289  etransclem35  46298  etransclem37  46300
  Copyright terms: Public domain W3C validator