Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem10 Structured version   Visualization version   GIF version

Theorem etransclem10 46215
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem10.n (𝜑𝑃 ∈ ℕ)
etransclem10.m (𝜑𝑀 ∈ ℕ0)
etransclem10.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem10.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
etransclem10 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)

Proof of Theorem etransclem10
StepHypRef Expression
1 0zd 12517 . 2 ((𝜑 ∧ (𝑃 − 1) < (𝐶‘0)) → 0 ∈ ℤ)
2 0zd 12517 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
3 etransclem10.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
4 nnm1nn0 12459 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
53, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
65nn0zd 12531 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℤ)
7 etransclem10.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
8 etransclem10.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
9 nn0uz 12811 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
108, 9eleqtrdi 2838 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘0))
11 eluzfz1 13468 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
1210, 11syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ (0...𝑀))
137, 12ffvelcdmd 7039 . . . . . . . . . . 11 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
1413elfzelzd 13462 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ ℤ)
156, 14zsubcld 12619 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
162, 6, 153jca 1128 . . . . . . . 8 (𝜑 → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ))
1716adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ))
1814zred 12614 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ ℝ)
1918adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ∈ ℝ)
205nn0red 12480 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℝ)
2120adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ∈ ℝ)
22 simpr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ¬ (𝑃 − 1) < (𝐶‘0))
2319, 21, 22nltled 11300 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ≤ (𝑃 − 1))
2421, 19subge0d 11744 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ↔ (𝐶‘0) ≤ (𝑃 − 1)))
2523, 24mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 ≤ ((𝑃 − 1) − (𝐶‘0)))
26 elfzle1 13464 . . . . . . . . . 10 ((𝐶‘0) ∈ (0...𝑁) → 0 ≤ (𝐶‘0))
2713, 26syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐶‘0))
2827adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 ≤ (𝐶‘0))
2921, 19subge02d 11746 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ≤ (𝐶‘0) ↔ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1)))
3028, 29mpbid 232 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))
3117, 25, 30jca32 515 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ) ∧ (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ∧ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))))
32 elfz2 13451 . . . . . 6 (((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)) ↔ ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ) ∧ (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ∧ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))))
3331, 32sylibr 234 . . . . 5 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)))
34 permnn 14267 . . . . 5 (((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℕ)
3533, 34syl 17 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℕ)
3635nnzd 12532 . . 3 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℤ)
37 etransclem10.j . . . . 5 (𝜑𝐽 ∈ ℤ)
3837adantr 480 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 𝐽 ∈ ℤ)
3915adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
40 elnn0z 12518 . . . . 5 (((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0 ↔ (((𝑃 − 1) − (𝐶‘0)) ∈ ℤ ∧ 0 ≤ ((𝑃 − 1) − (𝐶‘0))))
4139, 25, 40sylanbrc 583 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0)
42 zexpcl 14017 . . . 4 ((𝐽 ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) ∈ ℤ)
4338, 41, 42syl2anc 584 . . 3 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) ∈ ℤ)
4436, 43zmulcld 12620 . 2 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) ∈ ℤ)
451, 44ifclda 4520 1 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2109  ifcif 4484   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  cexp 14002  !cfa 14214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244
This theorem is referenced by:  etransclem25  46230  etransclem26  46231  etransclem35  46240  etransclem37  46242
  Copyright terms: Public domain W3C validator