| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11270 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 class class class wbr 5095 ℝcr 11016 < clt 11157 ≤ cle 11158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-xr 11161 df-le 11163 |
| This theorem is referenced by: lbinf 12086 supaddc 12100 supmul1 12102 zsupss 12841 prodge0rd 13005 infmrp1 13251 fzdisj 13458 uzdisj 13504 fzouzdisj 13602 addmodlteq 13860 seqf1olem1 13955 seqf1olem2 13956 seqcoll 14378 seqcoll2 14379 ccatalpha 14508 rlimcld2 15492 rlimno1 15568 smupvallem 16401 lcmgcdlem 16524 4sqlem11 16874 ramcl2lem 16928 psdmul 22100 recld2 24750 nmoleub2lem3 25062 ivthlem3 25401 ovolicopnf 25472 dvferm1lem 25935 dvferm2lem 25937 dgrlb 26188 dgreq0 26218 aaliou3lem9 26305 radcnvle 26376 abelthlem2 26389 dvlog2lem 26608 lgsval2lem 27265 pntlem3 27567 irredminply 33801 unblimceq0lem 36622 unblimceq0 36623 mblfinlem2 37771 imo72b2 44329 climisp 45906 stoweidlem52 46212 fourierdlem10 46277 fourierdlem12 46279 fourierdlem20 46287 fourierdlem50 46316 fourierdlem54 46320 fourierdlem103 46369 fouriersw 46391 etransclem35 46429 etransc 46443 |
| Copyright terms: Public domain | W3C validator |