| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11281 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-xr 11172 df-le 11174 |
| This theorem is referenced by: lbinf 12097 supaddc 12111 supmul1 12113 zsupss 12857 prodge0rd 13021 infmrp1 13266 fzdisj 13473 uzdisj 13519 fzouzdisj 13617 addmodlteq 13872 seqf1olem1 13967 seqf1olem2 13968 seqcoll 14390 seqcoll2 14391 ccatalpha 14519 rlimcld2 15504 rlimno1 15580 smupvallem 16413 lcmgcdlem 16536 4sqlem11 16886 ramcl2lem 16940 psdmul 22070 recld2 24720 nmoleub2lem3 25032 ivthlem3 25371 ovolicopnf 25442 dvferm1lem 25905 dvferm2lem 25907 dgrlb 26158 dgreq0 26188 aaliou3lem9 26275 radcnvle 26346 abelthlem2 26359 dvlog2lem 26578 lgsval2lem 27235 pntlem3 27537 irredminply 33702 unblimceq0lem 36499 unblimceq0 36500 mblfinlem2 37657 imo72b2 44165 climisp 45747 stoweidlem52 46053 fourierdlem10 46118 fourierdlem12 46120 fourierdlem20 46128 fourierdlem50 46157 fourierdlem54 46161 fourierdlem103 46210 fouriersw 46232 etransclem35 46270 etransc 46284 |
| Copyright terms: Public domain | W3C validator |