Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 2, 3 | lenltd 11121 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | 1, 4 | mpbid 231 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-xr 11013 df-le 11015 |
This theorem is referenced by: lbinf 11928 supaddc 11942 supmul1 11944 zsupss 12677 prodge0rd 12837 infmrp1 13078 fzdisj 13283 uzdisj 13329 fzouzdisj 13423 addmodlteq 13666 seqf1olem1 13762 seqf1olem2 13763 seqcoll 14178 seqcoll2 14179 ccatalpha 14298 rlimcld2 15287 rlimno1 15365 smupvallem 16190 lcmgcdlem 16311 4sqlem11 16656 ramcl2lem 16710 recld2 23977 nmoleub2lem3 24278 ivthlem3 24617 ovolicopnf 24688 dvferm1lem 25148 dvferm2lem 25150 dgrlb 25397 dgreq0 25426 aaliou3lem9 25510 radcnvle 25579 abelthlem2 25591 dvlog2lem 25807 lgsval2lem 26455 pntlem3 26757 unblimceq0lem 34686 unblimceq0 34687 mblfinlem2 35815 imo72b2 41783 climisp 43287 stoweidlem52 43593 fourierdlem10 43658 fourierdlem12 43660 fourierdlem20 43668 fourierdlem50 43697 fourierdlem54 43701 fourierdlem103 43750 fouriersw 43772 etransclem35 43810 etransc 43824 |
Copyright terms: Public domain | W3C validator |