Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 2, 3 | lenltd 10829 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | 1, 4 | mpbid 235 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 class class class wbr 5035 ℝcr 10579 < clt 10718 ≤ cle 10719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-opab 5098 df-xp 5533 df-cnv 5535 df-xr 10722 df-le 10724 |
This theorem is referenced by: lbinf 11635 supaddc 11649 supmul1 11651 zsupss 12382 prodge0rd 12542 infmrp1 12783 fzdisj 12988 uzdisj 13034 fzouzdisj 13127 addmodlteq 13368 seqf1olem1 13464 seqf1olem2 13465 seqcoll 13879 seqcoll2 13880 ccatalpha 13999 rlimcld2 14988 rlimno1 15063 smupvallem 15887 lcmgcdlem 16007 4sqlem11 16351 ramcl2lem 16405 recld2 23520 nmoleub2lem3 23821 ivthlem3 24158 ovolicopnf 24229 dvferm1lem 24688 dvferm2lem 24690 dgrlb 24937 dgreq0 24966 aaliou3lem9 25050 radcnvle 25119 abelthlem2 25131 dvlog2lem 25347 lgsval2lem 25995 pntlem3 26297 unblimceq0lem 34261 unblimceq0 34262 mblfinlem2 35401 imo72b2 41279 climisp 42782 stoweidlem52 43088 fourierdlem10 43153 fourierdlem12 43155 fourierdlem20 43163 fourierdlem50 43192 fourierdlem54 43196 fourierdlem103 43245 fouriersw 43267 etransclem35 43305 etransc 43319 |
Copyright terms: Public domain | W3C validator |