| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11296 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-xr 11188 df-le 11190 |
| This theorem is referenced by: lbinf 12112 supaddc 12126 supmul1 12128 zsupss 12872 prodge0rd 13036 infmrp1 13281 fzdisj 13488 uzdisj 13534 fzouzdisj 13632 addmodlteq 13887 seqf1olem1 13982 seqf1olem2 13983 seqcoll 14405 seqcoll2 14406 ccatalpha 14534 rlimcld2 15520 rlimno1 15596 smupvallem 16429 lcmgcdlem 16552 4sqlem11 16902 ramcl2lem 16956 psdmul 22029 recld2 24679 nmoleub2lem3 24991 ivthlem3 25330 ovolicopnf 25401 dvferm1lem 25864 dvferm2lem 25866 dgrlb 26117 dgreq0 26147 aaliou3lem9 26234 radcnvle 26305 abelthlem2 26318 dvlog2lem 26537 lgsval2lem 27194 pntlem3 27496 irredminply 33679 unblimceq0lem 36467 unblimceq0 36468 mblfinlem2 37625 imo72b2 44134 climisp 45717 stoweidlem52 46023 fourierdlem10 46088 fourierdlem12 46090 fourierdlem20 46098 fourierdlem50 46127 fourierdlem54 46131 fourierdlem103 46180 fouriersw 46202 etransclem35 46240 etransc 46254 |
| Copyright terms: Public domain | W3C validator |