![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 2, 3 | lenltd 11436 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-xr 11328 df-le 11330 |
This theorem is referenced by: lbinf 12248 supaddc 12262 supmul1 12264 zsupss 13002 prodge0rd 13164 infmrp1 13406 fzdisj 13611 uzdisj 13657 fzouzdisj 13752 addmodlteq 13997 seqf1olem1 14092 seqf1olem2 14093 seqcoll 14513 seqcoll2 14514 ccatalpha 14641 rlimcld2 15624 rlimno1 15702 smupvallem 16529 lcmgcdlem 16653 4sqlem11 17002 ramcl2lem 17056 psdmul 22193 recld2 24855 nmoleub2lem3 25167 ivthlem3 25507 ovolicopnf 25578 dvferm1lem 26042 dvferm2lem 26044 dgrlb 26295 dgreq0 26325 aaliou3lem9 26410 radcnvle 26481 abelthlem2 26494 dvlog2lem 26712 lgsval2lem 27369 pntlem3 27671 irredminply 33707 unblimceq0lem 36472 unblimceq0 36473 mblfinlem2 37618 imo72b2 44134 climisp 45667 stoweidlem52 45973 fourierdlem10 46038 fourierdlem12 46040 fourierdlem20 46048 fourierdlem50 46077 fourierdlem54 46081 fourierdlem103 46130 fouriersw 46152 etransclem35 46190 etransc 46204 |
Copyright terms: Public domain | W3C validator |