| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11381 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 < clt 11269 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-xr 11273 df-le 11275 |
| This theorem is referenced by: lbinf 12195 supaddc 12209 supmul1 12211 zsupss 12953 prodge0rd 13116 infmrp1 13361 fzdisj 13568 uzdisj 13614 fzouzdisj 13712 addmodlteq 13964 seqf1olem1 14059 seqf1olem2 14060 seqcoll 14482 seqcoll2 14483 ccatalpha 14611 rlimcld2 15594 rlimno1 15670 smupvallem 16502 lcmgcdlem 16625 4sqlem11 16975 ramcl2lem 17029 psdmul 22104 recld2 24754 nmoleub2lem3 25066 ivthlem3 25406 ovolicopnf 25477 dvferm1lem 25940 dvferm2lem 25942 dgrlb 26193 dgreq0 26223 aaliou3lem9 26310 radcnvle 26381 abelthlem2 26394 dvlog2lem 26613 lgsval2lem 27270 pntlem3 27572 irredminply 33750 unblimceq0lem 36524 unblimceq0 36525 mblfinlem2 37682 imo72b2 44196 climisp 45775 stoweidlem52 46081 fourierdlem10 46146 fourierdlem12 46148 fourierdlem20 46156 fourierdlem50 46185 fourierdlem54 46189 fourierdlem103 46238 fouriersw 46260 etransclem35 46298 etransc 46312 |
| Copyright terms: Public domain | W3C validator |