| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11320 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-xr 11212 df-le 11214 |
| This theorem is referenced by: lbinf 12136 supaddc 12150 supmul1 12152 zsupss 12896 prodge0rd 13060 infmrp1 13305 fzdisj 13512 uzdisj 13558 fzouzdisj 13656 addmodlteq 13911 seqf1olem1 14006 seqf1olem2 14007 seqcoll 14429 seqcoll2 14430 ccatalpha 14558 rlimcld2 15544 rlimno1 15620 smupvallem 16453 lcmgcdlem 16576 4sqlem11 16926 ramcl2lem 16980 psdmul 22053 recld2 24703 nmoleub2lem3 25015 ivthlem3 25354 ovolicopnf 25425 dvferm1lem 25888 dvferm2lem 25890 dgrlb 26141 dgreq0 26171 aaliou3lem9 26258 radcnvle 26329 abelthlem2 26342 dvlog2lem 26561 lgsval2lem 27218 pntlem3 27520 irredminply 33706 unblimceq0lem 36494 unblimceq0 36495 mblfinlem2 37652 imo72b2 44161 climisp 45744 stoweidlem52 46050 fourierdlem10 46115 fourierdlem12 46117 fourierdlem20 46125 fourierdlem50 46154 fourierdlem54 46158 fourierdlem103 46207 fouriersw 46229 etransclem35 46267 etransc 46281 |
| Copyright terms: Public domain | W3C validator |