| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11327 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-xr 11219 df-le 11221 |
| This theorem is referenced by: lbinf 12143 supaddc 12157 supmul1 12159 zsupss 12903 prodge0rd 13067 infmrp1 13312 fzdisj 13519 uzdisj 13565 fzouzdisj 13663 addmodlteq 13918 seqf1olem1 14013 seqf1olem2 14014 seqcoll 14436 seqcoll2 14437 ccatalpha 14565 rlimcld2 15551 rlimno1 15627 smupvallem 16460 lcmgcdlem 16583 4sqlem11 16933 ramcl2lem 16987 psdmul 22060 recld2 24710 nmoleub2lem3 25022 ivthlem3 25361 ovolicopnf 25432 dvferm1lem 25895 dvferm2lem 25897 dgrlb 26148 dgreq0 26178 aaliou3lem9 26265 radcnvle 26336 abelthlem2 26349 dvlog2lem 26568 lgsval2lem 27225 pntlem3 27527 irredminply 33713 unblimceq0lem 36501 unblimceq0 36502 mblfinlem2 37659 imo72b2 44168 climisp 45751 stoweidlem52 46057 fourierdlem10 46122 fourierdlem12 46124 fourierdlem20 46132 fourierdlem50 46161 fourierdlem54 46165 fourierdlem103 46214 fouriersw 46236 etransclem35 46274 etransc 46288 |
| Copyright terms: Public domain | W3C validator |