| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 11254 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 class class class wbr 5086 ℝcr 11000 < clt 11141 ≤ cle 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-xr 11145 df-le 11147 |
| This theorem is referenced by: lbinf 12070 supaddc 12084 supmul1 12086 zsupss 12830 prodge0rd 12994 infmrp1 13239 fzdisj 13446 uzdisj 13492 fzouzdisj 13590 addmodlteq 13848 seqf1olem1 13943 seqf1olem2 13944 seqcoll 14366 seqcoll2 14367 ccatalpha 14496 rlimcld2 15480 rlimno1 15556 smupvallem 16389 lcmgcdlem 16512 4sqlem11 16862 ramcl2lem 16916 psdmul 22076 recld2 24725 nmoleub2lem3 25037 ivthlem3 25376 ovolicopnf 25447 dvferm1lem 25910 dvferm2lem 25912 dgrlb 26163 dgreq0 26193 aaliou3lem9 26280 radcnvle 26351 abelthlem2 26364 dvlog2lem 26583 lgsval2lem 27240 pntlem3 27542 irredminply 33721 unblimceq0lem 36540 unblimceq0 36541 mblfinlem2 37698 imo72b2 44205 climisp 45784 stoweidlem52 46090 fourierdlem10 46155 fourierdlem12 46157 fourierdlem20 46165 fourierdlem50 46194 fourierdlem54 46198 fourierdlem103 46247 fouriersw 46269 etransclem35 46307 etransc 46321 |
| Copyright terms: Public domain | W3C validator |