Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lensymd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lensymd.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lensymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lensymd.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 2, 3 | lenltd 11051 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | 1, 4 | mpbid 231 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-xr 10944 df-le 10946 |
This theorem is referenced by: lbinf 11858 supaddc 11872 supmul1 11874 zsupss 12606 prodge0rd 12766 infmrp1 13007 fzdisj 13212 uzdisj 13258 fzouzdisj 13351 addmodlteq 13594 seqf1olem1 13690 seqf1olem2 13691 seqcoll 14106 seqcoll2 14107 ccatalpha 14226 rlimcld2 15215 rlimno1 15293 smupvallem 16118 lcmgcdlem 16239 4sqlem11 16584 ramcl2lem 16638 recld2 23883 nmoleub2lem3 24184 ivthlem3 24522 ovolicopnf 24593 dvferm1lem 25053 dvferm2lem 25055 dgrlb 25302 dgreq0 25331 aaliou3lem9 25415 radcnvle 25484 abelthlem2 25496 dvlog2lem 25712 lgsval2lem 26360 pntlem3 26662 unblimceq0lem 34613 unblimceq0 34614 mblfinlem2 35742 imo72b2 41672 climisp 43177 stoweidlem52 43483 fourierdlem10 43548 fourierdlem12 43550 fourierdlem20 43558 fourierdlem50 43587 fourierdlem54 43591 fourierdlem103 43640 fouriersw 43662 etransclem35 43700 etransc 43714 |
Copyright terms: Public domain | W3C validator |