![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem3 | Structured version Visualization version GIF version |
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem3.n | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
etransclem3.c | ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) |
etransclem3.j | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
etransclem3.4 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
Ref | Expression |
---|---|
etransclem3 | ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0zd 12651 | . 2 ⊢ ((𝜑 ∧ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) | |
2 | 0zd 12651 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) | |
3 | etransclem3.n | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
4 | 3 | nnzd 12666 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℤ) |
6 | etransclem3.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) | |
7 | etransclem3.j | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
8 | 6, 7 | ffvelcdmd 7119 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶‘𝐽) ∈ (0...𝑁)) |
9 | 8 | elfzelzd 13585 | . . . . . . . 8 ⊢ (𝜑 → (𝐶‘𝐽) ∈ ℤ) |
10 | 4, 9 | zsubcld 12752 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
12 | 9 | zred 12747 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶‘𝐽) ∈ ℝ) |
13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ∈ ℝ) |
14 | 5 | zred 12747 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℝ) |
15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ¬ 𝑃 < (𝐶‘𝐽)) | |
16 | 13, 14, 15 | nltled 11440 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ≤ 𝑃) |
17 | 14, 13 | subge0d 11880 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (0 ≤ (𝑃 − (𝐶‘𝐽)) ↔ (𝐶‘𝐽) ≤ 𝑃)) |
18 | 16, 17 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ≤ (𝑃 − (𝐶‘𝐽))) |
19 | elfzle1 13587 | . . . . . . . . 9 ⊢ ((𝐶‘𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶‘𝐽)) | |
20 | 8, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ (𝐶‘𝐽)) |
21 | 3 | nnred 12308 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
22 | 21, 12 | subge02d 11882 | . . . . . . . 8 ⊢ (𝜑 → (0 ≤ (𝐶‘𝐽) ↔ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃)) |
23 | 20, 22 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
25 | 2, 5, 11, 18, 24 | elfzd 13575 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃)) |
26 | permnn 14375 | . . . . 5 ⊢ ((𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) | |
27 | 25, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) |
28 | 27 | nnzd 12666 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
29 | etransclem3.4 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
30 | 7 | elfzelzd 13585 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
31 | 29, 30 | zsubcld 12752 | . . . . 5 ⊢ (𝜑 → (𝐾 − 𝐽) ∈ ℤ) |
32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐾 − 𝐽) ∈ ℤ) |
33 | elnn0z 12652 | . . . . 5 ⊢ ((𝑃 − (𝐶‘𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶‘𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶‘𝐽)))) | |
34 | 11, 18, 33 | sylanbrc 582 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) |
35 | zexpcl 14127 | . . . 4 ⊢ (((𝐾 − 𝐽) ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) | |
36 | 32, 34, 35 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) |
37 | 28, 36 | zmulcld 12753 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
38 | 1, 37 | ifclda 4583 | 1 ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 · cmul 11189 < clt 11324 ≤ cle 11325 − cmin 11520 / cdiv 11947 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 ...cfz 13567 ↑cexp 14112 !cfa 14322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 |
This theorem is referenced by: etransclem24 46179 etransclem25 46180 etransclem26 46181 etransclem35 46190 etransclem37 46192 |
Copyright terms: Public domain | W3C validator |