Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem3 Structured version   Visualization version   GIF version

Theorem etransclem3 46238
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem3.n (𝜑𝑃 ∈ ℕ)
etransclem3.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem3.j (𝜑𝐽 ∈ (0...𝑀))
etransclem3.4 (𝜑𝐾 ∈ ℤ)
Assertion
Ref Expression
etransclem3 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)

Proof of Theorem etransclem3
StepHypRef Expression
1 0zd 12502 . 2 ((𝜑𝑃 < (𝐶𝐽)) → 0 ∈ ℤ)
2 0zd 12502 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 0 ∈ ℤ)
3 etransclem3.n . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
43nnzd 12517 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
54adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℤ)
6 etransclem3.c . . . . . . . . . 10 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
7 etransclem3.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0...𝑀))
86, 7ffvelcdmd 7023 . . . . . . . . 9 (𝜑 → (𝐶𝐽) ∈ (0...𝑁))
98elfzelzd 13447 . . . . . . . 8 (𝜑 → (𝐶𝐽) ∈ ℤ)
104, 9zsubcld 12604 . . . . . . 7 (𝜑 → (𝑃 − (𝐶𝐽)) ∈ ℤ)
1110adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ ℤ)
129zred 12599 . . . . . . . . 9 (𝜑 → (𝐶𝐽) ∈ ℝ)
1312adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ∈ ℝ)
145zred 12599 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℝ)
15 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ¬ 𝑃 < (𝐶𝐽))
1613, 14, 15nltled 11285 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ≤ 𝑃)
1714, 13subge0d 11729 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (0 ≤ (𝑃 − (𝐶𝐽)) ↔ (𝐶𝐽) ≤ 𝑃))
1816, 17mpbird 257 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 0 ≤ (𝑃 − (𝐶𝐽)))
19 elfzle1 13449 . . . . . . . . 9 ((𝐶𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶𝐽))
208, 19syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝐶𝐽))
213nnred 12162 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ)
2221, 12subge02d 11731 . . . . . . . 8 (𝜑 → (0 ≤ (𝐶𝐽) ↔ (𝑃 − (𝐶𝐽)) ≤ 𝑃))
2320, 22mpbid 232 . . . . . . 7 (𝜑 → (𝑃 − (𝐶𝐽)) ≤ 𝑃)
2423adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ≤ 𝑃)
252, 5, 11, 18, 24elfzd 13437 . . . . 5 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ (0...𝑃))
26 permnn 14252 . . . . 5 ((𝑃 − (𝐶𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℕ)
2725, 26syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℕ)
2827nnzd 12517 . . 3 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℤ)
29 etransclem3.4 . . . . . 6 (𝜑𝐾 ∈ ℤ)
307elfzelzd 13447 . . . . . 6 (𝜑𝐽 ∈ ℤ)
3129, 30zsubcld 12604 . . . . 5 (𝜑 → (𝐾𝐽) ∈ ℤ)
3231adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐾𝐽) ∈ ℤ)
33 elnn0z 12503 . . . . 5 ((𝑃 − (𝐶𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶𝐽))))
3411, 18, 33sylanbrc 583 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ ℕ0)
35 zexpcl 14002 . . . 4 (((𝐾𝐽) ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℕ0) → ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))) ∈ ℤ)
3632, 34, 35syl2anc 584 . . 3 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))) ∈ ℤ)
3728, 36zmulcld 12605 . 2 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽)))) ∈ ℤ)
381, 37ifclda 4514 1 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  ifcif 4478   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028   · cmul 11033   < clt 11168  cle 11169  cmin 11366   / cdiv 11796  cn 12147  0cn0 12403  cz 12490  ...cfz 13429  cexp 13987  !cfa 14199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229
This theorem is referenced by:  etransclem24  46259  etransclem25  46260  etransclem26  46261  etransclem35  46270  etransclem37  46272
  Copyright terms: Public domain W3C validator