| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem3 | Structured version Visualization version GIF version | ||
| Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem3.n | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| etransclem3.c | ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) |
| etransclem3.j | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
| etransclem3.4 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| Ref | Expression |
|---|---|
| etransclem3 | ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12625 | . 2 ⊢ ((𝜑 ∧ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) | |
| 2 | 0zd 12625 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) | |
| 3 | etransclem3.n | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 4 | 3 | nnzd 12640 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℤ) |
| 6 | etransclem3.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) | |
| 7 | etransclem3.j | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
| 8 | 6, 7 | ffvelcdmd 7105 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶‘𝐽) ∈ (0...𝑁)) |
| 9 | 8 | elfzelzd 13565 | . . . . . . . 8 ⊢ (𝜑 → (𝐶‘𝐽) ∈ ℤ) |
| 10 | 4, 9 | zsubcld 12727 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
| 12 | 9 | zred 12722 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶‘𝐽) ∈ ℝ) |
| 13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ∈ ℝ) |
| 14 | 5 | zred 12722 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℝ) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ¬ 𝑃 < (𝐶‘𝐽)) | |
| 16 | 13, 14, 15 | nltled 11411 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ≤ 𝑃) |
| 17 | 14, 13 | subge0d 11853 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (0 ≤ (𝑃 − (𝐶‘𝐽)) ↔ (𝐶‘𝐽) ≤ 𝑃)) |
| 18 | 16, 17 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ≤ (𝑃 − (𝐶‘𝐽))) |
| 19 | elfzle1 13567 | . . . . . . . . 9 ⊢ ((𝐶‘𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶‘𝐽)) | |
| 20 | 8, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ (𝐶‘𝐽)) |
| 21 | 3 | nnred 12281 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 22 | 21, 12 | subge02d 11855 | . . . . . . . 8 ⊢ (𝜑 → (0 ≤ (𝐶‘𝐽) ↔ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃)) |
| 23 | 20, 22 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
| 25 | 2, 5, 11, 18, 24 | elfzd 13555 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃)) |
| 26 | permnn 14365 | . . . . 5 ⊢ ((𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) | |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) |
| 28 | 27 | nnzd 12640 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
| 29 | etransclem3.4 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 30 | 7 | elfzelzd 13565 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 31 | 29, 30 | zsubcld 12727 | . . . . 5 ⊢ (𝜑 → (𝐾 − 𝐽) ∈ ℤ) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐾 − 𝐽) ∈ ℤ) |
| 33 | elnn0z 12626 | . . . . 5 ⊢ ((𝑃 − (𝐶‘𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶‘𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶‘𝐽)))) | |
| 34 | 11, 18, 33 | sylanbrc 583 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) |
| 35 | zexpcl 14117 | . . . 4 ⊢ (((𝐾 − 𝐽) ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) | |
| 36 | 32, 34, 35 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) |
| 37 | 28, 36 | zmulcld 12728 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
| 38 | 1, 37 | ifclda 4561 | 1 ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ifcif 4525 class class class wbr 5143 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 · cmul 11160 < clt 11295 ≤ cle 11296 − cmin 11492 / cdiv 11920 ℕcn 12266 ℕ0cn0 12526 ℤcz 12613 ...cfz 13547 ↑cexp 14102 !cfa 14312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 |
| This theorem is referenced by: etransclem24 46273 etransclem25 46274 etransclem26 46275 etransclem35 46284 etransclem37 46286 |
| Copyright terms: Public domain | W3C validator |