Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem3 Structured version   Visualization version   GIF version

Theorem etransclem3 42542
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem3.n (𝜑𝑃 ∈ ℕ)
etransclem3.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem3.j (𝜑𝐽 ∈ (0...𝑀))
etransclem3.4 (𝜑𝐾 ∈ ℤ)
Assertion
Ref Expression
etransclem3 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)

Proof of Theorem etransclem3
StepHypRef Expression
1 0zd 11994 . 2 ((𝜑𝑃 < (𝐶𝐽)) → 0 ∈ ℤ)
2 0zd 11994 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 0 ∈ ℤ)
3 etransclem3.n . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
43nnzd 12087 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
54adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℤ)
6 etransclem3.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
7 etransclem3.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑀))
86, 7ffvelrnd 6852 . . . . . . . . . . 11 (𝜑 → (𝐶𝐽) ∈ (0...𝑁))
98elfzelzd 41602 . . . . . . . . . 10 (𝜑 → (𝐶𝐽) ∈ ℤ)
104, 9zsubcld 12093 . . . . . . . . 9 (𝜑 → (𝑃 − (𝐶𝐽)) ∈ ℤ)
1110adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ ℤ)
122, 5, 113jca 1124 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℤ))
139zred 12088 . . . . . . . . . 10 (𝜑 → (𝐶𝐽) ∈ ℝ)
1413adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ∈ ℝ)
155zred 12088 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℝ)
16 simpr 487 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ¬ 𝑃 < (𝐶𝐽))
1714, 15, 16nltled 10790 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ≤ 𝑃)
1815, 14subge0d 11230 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (0 ≤ (𝑃 − (𝐶𝐽)) ↔ (𝐶𝐽) ≤ 𝑃))
1917, 18mpbird 259 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 0 ≤ (𝑃 − (𝐶𝐽)))
20 elfzle1 12911 . . . . . . . . . 10 ((𝐶𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶𝐽))
218, 20syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐶𝐽))
223nnred 11653 . . . . . . . . . 10 (𝜑𝑃 ∈ ℝ)
2322, 13subge02d 11232 . . . . . . . . 9 (𝜑 → (0 ≤ (𝐶𝐽) ↔ (𝑃 − (𝐶𝐽)) ≤ 𝑃))
2421, 23mpbid 234 . . . . . . . 8 (𝜑 → (𝑃 − (𝐶𝐽)) ≤ 𝑃)
2524adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ≤ 𝑃)
2612, 19, 25jca32 518 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶𝐽)) ∧ (𝑃 − (𝐶𝐽)) ≤ 𝑃)))
27 elfz2 12900 . . . . . 6 ((𝑃 − (𝐶𝐽)) ∈ (0...𝑃) ↔ ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶𝐽)) ∧ (𝑃 − (𝐶𝐽)) ≤ 𝑃)))
2826, 27sylibr 236 . . . . 5 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ (0...𝑃))
29 permnn 13687 . . . . 5 ((𝑃 − (𝐶𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℕ)
3028, 29syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℕ)
3130nnzd 12087 . . 3 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℤ)
32 etransclem3.4 . . . . . 6 (𝜑𝐾 ∈ ℤ)
337elfzelzd 41602 . . . . . 6 (𝜑𝐽 ∈ ℤ)
3432, 33zsubcld 12093 . . . . 5 (𝜑 → (𝐾𝐽) ∈ ℤ)
3534adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐾𝐽) ∈ ℤ)
36 elnn0z 11995 . . . . 5 ((𝑃 − (𝐶𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶𝐽))))
3711, 19, 36sylanbrc 585 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ ℕ0)
38 zexpcl 13445 . . . 4 (((𝐾𝐽) ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℕ0) → ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))) ∈ ℤ)
3935, 37, 38syl2anc 586 . . 3 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))) ∈ ℤ)
4031, 39zmulcld 12094 . 2 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽)))) ∈ ℤ)
411, 40ifclda 4501 1 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083  wcel 2114  ifcif 4467   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  0cn0 11898  cz 11982  ...cfz 12893  cexp 13430  !cfa 13634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664
This theorem is referenced by:  etransclem24  42563  etransclem25  42564  etransclem26  42565  etransclem35  42574  etransclem37  42576
  Copyright terms: Public domain W3C validator