Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem3 | Structured version Visualization version GIF version |
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem3.n | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
etransclem3.c | ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) |
etransclem3.j | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
etransclem3.4 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
Ref | Expression |
---|---|
etransclem3 | ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0zd 12261 | . 2 ⊢ ((𝜑 ∧ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) | |
2 | 0zd 12261 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) | |
3 | etransclem3.n | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
4 | 3 | nnzd 12354 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℤ) |
6 | etransclem3.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) | |
7 | etransclem3.j | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
8 | 6, 7 | ffvelrnd 6944 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶‘𝐽) ∈ (0...𝑁)) |
9 | 8 | elfzelzd 13186 | . . . . . . . 8 ⊢ (𝜑 → (𝐶‘𝐽) ∈ ℤ) |
10 | 4, 9 | zsubcld 12360 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
12 | 9 | zred 12355 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶‘𝐽) ∈ ℝ) |
13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ∈ ℝ) |
14 | 5 | zred 12355 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℝ) |
15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ¬ 𝑃 < (𝐶‘𝐽)) | |
16 | 13, 14, 15 | nltled 11055 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ≤ 𝑃) |
17 | 14, 13 | subge0d 11495 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (0 ≤ (𝑃 − (𝐶‘𝐽)) ↔ (𝐶‘𝐽) ≤ 𝑃)) |
18 | 16, 17 | mpbird 256 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ≤ (𝑃 − (𝐶‘𝐽))) |
19 | elfzle1 13188 | . . . . . . . . 9 ⊢ ((𝐶‘𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶‘𝐽)) | |
20 | 8, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ (𝐶‘𝐽)) |
21 | 3 | nnred 11918 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
22 | 21, 12 | subge02d 11497 | . . . . . . . 8 ⊢ (𝜑 → (0 ≤ (𝐶‘𝐽) ↔ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃)) |
23 | 20, 22 | mpbid 231 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
25 | 2, 5, 11, 18, 24 | elfzd 13176 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃)) |
26 | permnn 13968 | . . . . 5 ⊢ ((𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) | |
27 | 25, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) |
28 | 27 | nnzd 12354 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
29 | etransclem3.4 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
30 | 7 | elfzelzd 13186 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
31 | 29, 30 | zsubcld 12360 | . . . . 5 ⊢ (𝜑 → (𝐾 − 𝐽) ∈ ℤ) |
32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐾 − 𝐽) ∈ ℤ) |
33 | elnn0z 12262 | . . . . 5 ⊢ ((𝑃 − (𝐶‘𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶‘𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶‘𝐽)))) | |
34 | 11, 18, 33 | sylanbrc 582 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) |
35 | zexpcl 13725 | . . . 4 ⊢ (((𝐾 − 𝐽) ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) | |
36 | 32, 34, 35 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) |
37 | 28, 36 | zmulcld 12361 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
38 | 1, 37 | ifclda 4491 | 1 ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ...cfz 13168 ↑cexp 13710 !cfa 13915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 |
This theorem is referenced by: etransclem24 43689 etransclem25 43690 etransclem26 43691 etransclem35 43700 etransclem37 43702 |
Copyright terms: Public domain | W3C validator |