| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem3 | Structured version Visualization version GIF version | ||
| Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem3.n | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| etransclem3.c | ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) |
| etransclem3.j | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
| etransclem3.4 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| Ref | Expression |
|---|---|
| etransclem3 | ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12475 | . 2 ⊢ ((𝜑 ∧ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) | |
| 2 | 0zd 12475 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) | |
| 3 | etransclem3.n | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 4 | 3 | nnzd 12490 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℤ) |
| 6 | etransclem3.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) | |
| 7 | etransclem3.j | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
| 8 | 6, 7 | ffvelcdmd 7013 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶‘𝐽) ∈ (0...𝑁)) |
| 9 | 8 | elfzelzd 13420 | . . . . . . . 8 ⊢ (𝜑 → (𝐶‘𝐽) ∈ ℤ) |
| 10 | 4, 9 | zsubcld 12577 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
| 12 | 9 | zred 12572 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶‘𝐽) ∈ ℝ) |
| 13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ∈ ℝ) |
| 14 | 5 | zred 12572 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℝ) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ¬ 𝑃 < (𝐶‘𝐽)) | |
| 16 | 13, 14, 15 | nltled 11258 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ≤ 𝑃) |
| 17 | 14, 13 | subge0d 11702 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (0 ≤ (𝑃 − (𝐶‘𝐽)) ↔ (𝐶‘𝐽) ≤ 𝑃)) |
| 18 | 16, 17 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ≤ (𝑃 − (𝐶‘𝐽))) |
| 19 | elfzle1 13422 | . . . . . . . . 9 ⊢ ((𝐶‘𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶‘𝐽)) | |
| 20 | 8, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ (𝐶‘𝐽)) |
| 21 | 3 | nnred 12135 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 22 | 21, 12 | subge02d 11704 | . . . . . . . 8 ⊢ (𝜑 → (0 ≤ (𝐶‘𝐽) ↔ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃)) |
| 23 | 20, 22 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
| 25 | 2, 5, 11, 18, 24 | elfzd 13410 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃)) |
| 26 | permnn 14228 | . . . . 5 ⊢ ((𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) | |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) |
| 28 | 27 | nnzd 12490 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
| 29 | etransclem3.4 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 30 | 7 | elfzelzd 13420 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 31 | 29, 30 | zsubcld 12577 | . . . . 5 ⊢ (𝜑 → (𝐾 − 𝐽) ∈ ℤ) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐾 − 𝐽) ∈ ℤ) |
| 33 | elnn0z 12476 | . . . . 5 ⊢ ((𝑃 − (𝐶‘𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶‘𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶‘𝐽)))) | |
| 34 | 11, 18, 33 | sylanbrc 583 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) |
| 35 | zexpcl 13978 | . . . 4 ⊢ (((𝐾 − 𝐽) ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) | |
| 36 | 32, 34, 35 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) |
| 37 | 28, 36 | zmulcld 12578 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
| 38 | 1, 37 | ifclda 4506 | 1 ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ifcif 4470 class class class wbr 5086 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 · cmul 11006 < clt 11141 ≤ cle 11142 − cmin 11339 / cdiv 11769 ℕcn 12120 ℕ0cn0 12376 ℤcz 12463 ...cfz 13402 ↑cexp 13963 !cfa 14175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-seq 13904 df-exp 13964 df-fac 14176 df-bc 14205 |
| This theorem is referenced by: etransclem24 46296 etransclem25 46297 etransclem26 46298 etransclem35 46307 etransclem37 46309 |
| Copyright terms: Public domain | W3C validator |