| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem3 | Structured version Visualization version GIF version | ||
| Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem3.n | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| etransclem3.c | ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) |
| etransclem3.j | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
| etransclem3.4 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| Ref | Expression |
|---|---|
| etransclem3 | ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12517 | . 2 ⊢ ((𝜑 ∧ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) | |
| 2 | 0zd 12517 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) | |
| 3 | etransclem3.n | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 4 | 3 | nnzd 12532 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℤ) |
| 6 | etransclem3.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) | |
| 7 | etransclem3.j | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
| 8 | 6, 7 | ffvelcdmd 7039 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶‘𝐽) ∈ (0...𝑁)) |
| 9 | 8 | elfzelzd 13462 | . . . . . . . 8 ⊢ (𝜑 → (𝐶‘𝐽) ∈ ℤ) |
| 10 | 4, 9 | zsubcld 12619 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
| 12 | 9 | zred 12614 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶‘𝐽) ∈ ℝ) |
| 13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ∈ ℝ) |
| 14 | 5 | zred 12614 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℝ) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ¬ 𝑃 < (𝐶‘𝐽)) | |
| 16 | 13, 14, 15 | nltled 11300 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ≤ 𝑃) |
| 17 | 14, 13 | subge0d 11744 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (0 ≤ (𝑃 − (𝐶‘𝐽)) ↔ (𝐶‘𝐽) ≤ 𝑃)) |
| 18 | 16, 17 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ≤ (𝑃 − (𝐶‘𝐽))) |
| 19 | elfzle1 13464 | . . . . . . . . 9 ⊢ ((𝐶‘𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶‘𝐽)) | |
| 20 | 8, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ (𝐶‘𝐽)) |
| 21 | 3 | nnred 12177 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 22 | 21, 12 | subge02d 11746 | . . . . . . . 8 ⊢ (𝜑 → (0 ≤ (𝐶‘𝐽) ↔ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃)) |
| 23 | 20, 22 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
| 25 | 2, 5, 11, 18, 24 | elfzd 13452 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃)) |
| 26 | permnn 14267 | . . . . 5 ⊢ ((𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) | |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) |
| 28 | 27 | nnzd 12532 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
| 29 | etransclem3.4 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 30 | 7 | elfzelzd 13462 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 31 | 29, 30 | zsubcld 12619 | . . . . 5 ⊢ (𝜑 → (𝐾 − 𝐽) ∈ ℤ) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐾 − 𝐽) ∈ ℤ) |
| 33 | elnn0z 12518 | . . . . 5 ⊢ ((𝑃 − (𝐶‘𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶‘𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶‘𝐽)))) | |
| 34 | 11, 18, 33 | sylanbrc 583 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) |
| 35 | zexpcl 14017 | . . . 4 ⊢ (((𝐾 − 𝐽) ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) | |
| 36 | 32, 34, 35 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) |
| 37 | 28, 36 | zmulcld 12620 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
| 38 | 1, 37 | ifclda 4520 | 1 ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ifcif 4484 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 · cmul 11049 < clt 11184 ≤ cle 11185 − cmin 11381 / cdiv 11811 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 ...cfz 13444 ↑cexp 14002 !cfa 14214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 |
| This theorem is referenced by: etransclem24 46229 etransclem25 46230 etransclem26 46231 etransclem35 46240 etransclem37 46242 |
| Copyright terms: Public domain | W3C validator |