Proof of Theorem etransclem3
Step | Hyp | Ref
| Expression |
1 | | 0zd 11716 |
. 2
⊢ ((𝜑 ∧ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) |
2 | | 0zd 11716 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) |
3 | | etransclem3.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℕ) |
4 | 3 | nnzd 11809 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℤ) |
5 | 4 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℤ) |
6 | | etransclem3.c |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) |
7 | | etransclem3.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
8 | 6, 7 | ffvelrnd 6609 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶‘𝐽) ∈ (0...𝑁)) |
9 | 8 | elfzelzd 40327 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶‘𝐽) ∈ ℤ) |
10 | 4, 9 | zsubcld 11815 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
11 | 10 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
12 | 2, 5, 11 | 3jca 1164 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℤ)) |
13 | 9 | zred 11810 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶‘𝐽) ∈ ℝ) |
14 | 13 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ∈ ℝ) |
15 | 5 | zred 11810 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℝ) |
16 | | simpr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ¬ 𝑃 < (𝐶‘𝐽)) |
17 | 14, 15, 16 | nltled 10506 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ≤ 𝑃) |
18 | 15, 14 | subge0d 10942 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (0 ≤ (𝑃 − (𝐶‘𝐽)) ↔ (𝐶‘𝐽) ≤ 𝑃)) |
19 | 17, 18 | mpbird 249 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ≤ (𝑃 − (𝐶‘𝐽))) |
20 | | elfzle1 12637 |
. . . . . . . . . 10
⊢ ((𝐶‘𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶‘𝐽)) |
21 | 8, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (𝐶‘𝐽)) |
22 | 3 | nnred 11367 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℝ) |
23 | 22, 13 | subge02d 10944 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤ (𝐶‘𝐽) ↔ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃)) |
24 | 21, 23 | mpbid 224 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
25 | 24 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
26 | 12, 19, 25 | jca32 513 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶‘𝐽)) ∧ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃))) |
27 | | elfz2 12626 |
. . . . . 6
⊢ ((𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃) ↔ ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶‘𝐽)) ∧ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃))) |
28 | 26, 27 | sylibr 226 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃)) |
29 | | permnn 13406 |
. . . . 5
⊢ ((𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) |
30 | 28, 29 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) |
31 | 30 | nnzd 11809 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
32 | | etransclem3.4 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℤ) |
33 | 7 | elfzelzd 40327 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ ℤ) |
34 | 32, 33 | zsubcld 11815 |
. . . . 5
⊢ (𝜑 → (𝐾 − 𝐽) ∈ ℤ) |
35 | 34 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐾 − 𝐽) ∈ ℤ) |
36 | | elnn0z 11717 |
. . . . 5
⊢ ((𝑃 − (𝐶‘𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶‘𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶‘𝐽)))) |
37 | 11, 19, 36 | sylanbrc 580 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈
ℕ0) |
38 | | zexpcl 13169 |
. . . 4
⊢ (((𝐾 − 𝐽) ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) →
((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) |
39 | 35, 37, 38 | syl2anc 581 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) |
40 | 31, 39 | zmulcld 11816 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
41 | 1, 40 | ifclda 4340 |
1
⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |