Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem3 Structured version   Visualization version   GIF version

Theorem etransclem3 42390
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem3.n (𝜑𝑃 ∈ ℕ)
etransclem3.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem3.j (𝜑𝐽 ∈ (0...𝑀))
etransclem3.4 (𝜑𝐾 ∈ ℤ)
Assertion
Ref Expression
etransclem3 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)

Proof of Theorem etransclem3
StepHypRef Expression
1 0zd 11985 . 2 ((𝜑𝑃 < (𝐶𝐽)) → 0 ∈ ℤ)
2 0zd 11985 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 0 ∈ ℤ)
3 etransclem3.n . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
43nnzd 12078 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
54adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℤ)
6 etransclem3.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
7 etransclem3.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑀))
86, 7ffvelrnd 6847 . . . . . . . . . . 11 (𝜑 → (𝐶𝐽) ∈ (0...𝑁))
98elfzelzd 41449 . . . . . . . . . 10 (𝜑 → (𝐶𝐽) ∈ ℤ)
104, 9zsubcld 12084 . . . . . . . . 9 (𝜑 → (𝑃 − (𝐶𝐽)) ∈ ℤ)
1110adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ ℤ)
122, 5, 113jca 1122 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℤ))
139zred 12079 . . . . . . . . . 10 (𝜑 → (𝐶𝐽) ∈ ℝ)
1413adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ∈ ℝ)
155zred 12079 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℝ)
16 simpr 485 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ¬ 𝑃 < (𝐶𝐽))
1714, 15, 16nltled 10782 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ≤ 𝑃)
1815, 14subge0d 11222 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (0 ≤ (𝑃 − (𝐶𝐽)) ↔ (𝐶𝐽) ≤ 𝑃))
1917, 18mpbird 258 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 0 ≤ (𝑃 − (𝐶𝐽)))
20 elfzle1 12903 . . . . . . . . . 10 ((𝐶𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶𝐽))
218, 20syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐶𝐽))
223nnred 11645 . . . . . . . . . 10 (𝜑𝑃 ∈ ℝ)
2322, 13subge02d 11224 . . . . . . . . 9 (𝜑 → (0 ≤ (𝐶𝐽) ↔ (𝑃 − (𝐶𝐽)) ≤ 𝑃))
2421, 23mpbid 233 . . . . . . . 8 (𝜑 → (𝑃 − (𝐶𝐽)) ≤ 𝑃)
2524adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ≤ 𝑃)
2612, 19, 25jca32 516 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶𝐽)) ∧ (𝑃 − (𝐶𝐽)) ≤ 𝑃)))
27 elfz2 12892 . . . . . 6 ((𝑃 − (𝐶𝐽)) ∈ (0...𝑃) ↔ ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶𝐽)) ∧ (𝑃 − (𝐶𝐽)) ≤ 𝑃)))
2826, 27sylibr 235 . . . . 5 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ (0...𝑃))
29 permnn 13679 . . . . 5 ((𝑃 − (𝐶𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℕ)
3028, 29syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℕ)
3130nnzd 12078 . . 3 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℤ)
32 etransclem3.4 . . . . . 6 (𝜑𝐾 ∈ ℤ)
337elfzelzd 41449 . . . . . 6 (𝜑𝐽 ∈ ℤ)
3432, 33zsubcld 12084 . . . . 5 (𝜑 → (𝐾𝐽) ∈ ℤ)
3534adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐾𝐽) ∈ ℤ)
36 elnn0z 11986 . . . . 5 ((𝑃 − (𝐶𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶𝐽))))
3711, 19, 36sylanbrc 583 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ ℕ0)
38 zexpcl 13437 . . . 4 (((𝐾𝐽) ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℕ0) → ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))) ∈ ℤ)
3935, 37, 38syl2anc 584 . . 3 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))) ∈ ℤ)
4031, 39zmulcld 12085 . 2 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽)))) ∈ ℤ)
411, 40ifclda 4503 1 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081  wcel 2107  ifcif 4469   class class class wbr 5062  wf 6347  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529   · cmul 10534   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  0cn0 11889  cz 11973  ...cfz 12885  cexp 13422  !cfa 13626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656
This theorem is referenced by:  etransclem24  42411  etransclem25  42412  etransclem26  42413  etransclem35  42422  etransclem37  42424
  Copyright terms: Public domain W3C validator