Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem3 Structured version   Visualization version   GIF version

Theorem etransclem3 46397
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem3.n (𝜑𝑃 ∈ ℕ)
etransclem3.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem3.j (𝜑𝐽 ∈ (0...𝑀))
etransclem3.4 (𝜑𝐾 ∈ ℤ)
Assertion
Ref Expression
etransclem3 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)

Proof of Theorem etransclem3
StepHypRef Expression
1 0zd 12491 . 2 ((𝜑𝑃 < (𝐶𝐽)) → 0 ∈ ℤ)
2 0zd 12491 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 0 ∈ ℤ)
3 etransclem3.n . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
43nnzd 12505 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
54adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℤ)
6 etransclem3.c . . . . . . . . . 10 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
7 etransclem3.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0...𝑀))
86, 7ffvelcdmd 7027 . . . . . . . . 9 (𝜑 → (𝐶𝐽) ∈ (0...𝑁))
98elfzelzd 13432 . . . . . . . 8 (𝜑 → (𝐶𝐽) ∈ ℤ)
104, 9zsubcld 12592 . . . . . . 7 (𝜑 → (𝑃 − (𝐶𝐽)) ∈ ℤ)
1110adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ ℤ)
129zred 12587 . . . . . . . . 9 (𝜑 → (𝐶𝐽) ∈ ℝ)
1312adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ∈ ℝ)
145zred 12587 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℝ)
15 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ¬ 𝑃 < (𝐶𝐽))
1613, 14, 15nltled 11274 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ≤ 𝑃)
1714, 13subge0d 11718 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (0 ≤ (𝑃 − (𝐶𝐽)) ↔ (𝐶𝐽) ≤ 𝑃))
1816, 17mpbird 257 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 0 ≤ (𝑃 − (𝐶𝐽)))
19 elfzle1 13434 . . . . . . . . 9 ((𝐶𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶𝐽))
208, 19syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝐶𝐽))
213nnred 12151 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ)
2221, 12subge02d 11720 . . . . . . . 8 (𝜑 → (0 ≤ (𝐶𝐽) ↔ (𝑃 − (𝐶𝐽)) ≤ 𝑃))
2320, 22mpbid 232 . . . . . . 7 (𝜑 → (𝑃 − (𝐶𝐽)) ≤ 𝑃)
2423adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ≤ 𝑃)
252, 5, 11, 18, 24elfzd 13422 . . . . 5 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ (0...𝑃))
26 permnn 14240 . . . . 5 ((𝑃 − (𝐶𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℕ)
2725, 26syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℕ)
2827nnzd 12505 . . 3 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℤ)
29 etransclem3.4 . . . . . 6 (𝜑𝐾 ∈ ℤ)
307elfzelzd 13432 . . . . . 6 (𝜑𝐽 ∈ ℤ)
3129, 30zsubcld 12592 . . . . 5 (𝜑 → (𝐾𝐽) ∈ ℤ)
3231adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐾𝐽) ∈ ℤ)
33 elnn0z 12492 . . . . 5 ((𝑃 − (𝐶𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶𝐽))))
3411, 18, 33sylanbrc 583 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ ℕ0)
35 zexpcl 13990 . . . 4 (((𝐾𝐽) ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℕ0) → ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))) ∈ ℤ)
3632, 34, 35syl2anc 584 . . 3 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))) ∈ ℤ)
3728, 36zmulcld 12593 . 2 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽)))) ∈ ℤ)
381, 37ifclda 4512 1 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2113  ifcif 4476   class class class wbr 5095  wf 6485  cfv 6489  (class class class)co 7355  cr 11016  0cc0 11017   · cmul 11022   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  0cn0 12392  cz 12479  ...cfz 13414  cexp 13975  !cfa 14187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217
This theorem is referenced by:  etransclem24  46418  etransclem25  46419  etransclem26  46420  etransclem35  46429  etransclem37  46431
  Copyright terms: Public domain W3C validator