Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem15 Structured version   Visualization version   GIF version

Theorem etransclem15 43419
Description: Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem15.p (𝜑𝑃 ∈ ℕ)
etransclem15.m (𝜑𝑀 ∈ ℕ0)
etransclem15.n (𝜑𝑁 ∈ ℕ0)
etransclem15.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem15.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem15.j (𝜑𝐽 = 0)
etransclem15.cpm1 (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))
Assertion
Ref Expression
etransclem15 (𝜑𝑇 = 0)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝑇(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem15
StepHypRef Expression
1 etransclem15.t . . 3 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
21a1i 11 . 2 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))))
3 iftrue 4435 . . . . . . 7 ((𝑃 − 1) < (𝐶‘0) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
43adantl 485 . . . . . 6 ((𝜑 ∧ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
5 iffalse 4438 . . . . . . . 8 (¬ (𝑃 − 1) < (𝐶‘0) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
65adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
7 etransclem15.j . . . . . . . . . . 11 (𝜑𝐽 = 0)
87oveq1d 7217 . . . . . . . . . 10 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑((𝑃 − 1) − (𝐶‘0))))
98adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑((𝑃 − 1) − (𝐶‘0))))
10 etransclem15.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
1110nnzd 12264 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℤ)
12 1zzd 12191 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
1311, 12zsubcld 12270 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℤ)
14 etransclem15.c . . . . . . . . . . . . . . 15 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
15 etransclem15.m . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
16 nn0uz 12459 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
1715, 16eleqtrdi 2844 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (ℤ‘0))
18 eluzfz1 13102 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
1917, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ (0...𝑀))
2014, 19ffvelrnd 6894 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
2120elfzelzd 13096 . . . . . . . . . . . . 13 (𝜑 → (𝐶‘0) ∈ ℤ)
2213, 21zsubcld 12270 . . . . . . . . . . . 12 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
2322adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
2421zred 12265 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘0) ∈ ℝ)
2524adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ∈ ℝ)
2613zred 12265 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ∈ ℝ)
2726adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ∈ ℝ)
28 simpr 488 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ¬ (𝑃 − 1) < (𝐶‘0))
2925, 27, 28nltled 10965 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ≤ (𝑃 − 1))
30 etransclem15.cpm1 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))
3130necomd 2990 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ≠ (𝐶‘0))
3231adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ≠ (𝐶‘0))
3325, 27, 29, 32leneltd 10969 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) < (𝑃 − 1))
3425, 27posdifd 11402 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝐶‘0) < (𝑃 − 1) ↔ 0 < ((𝑃 − 1) − (𝐶‘0))))
3533, 34mpbid 235 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 < ((𝑃 − 1) − (𝐶‘0)))
36 elnnz 12169 . . . . . . . . . . 11 (((𝑃 − 1) − (𝐶‘0)) ∈ ℕ ↔ (((𝑃 − 1) − (𝐶‘0)) ∈ ℤ ∧ 0 < ((𝑃 − 1) − (𝐶‘0))))
3723, 35, 36sylanbrc 586 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ)
38370expd 13692 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0↑((𝑃 − 1) − (𝐶‘0))) = 0)
399, 38eqtrd 2774 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = 0)
4039oveq2d 7218 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · 0))
41 nnm1nn0 12114 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4210, 41syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℕ0)
4342faccld 13833 . . . . . . . . . . 11 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
4443nncnd 11829 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
4544adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘(𝑃 − 1)) ∈ ℂ)
4637nnnn0d 12133 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0)
4746faccld 13833 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ∈ ℕ)
4847nncnd 11829 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ∈ ℂ)
4947nnne0d 11863 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ≠ 0)
5045, 48, 49divcld 11591 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℂ)
5150mul01d 11014 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · 0) = 0)
526, 40, 513eqtrd 2778 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
534, 52pm2.61dan 813 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
5453oveq1d 7217 . . . 4 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
557, 19eqeltrd 2834 . . . . . . 7 (𝜑𝐽 ∈ (0...𝑀))
5610, 14, 55etransclem7 43411 . . . . . 6 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
5756zcnd 12266 . . . . 5 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℂ)
5857mul02d 11013 . . . 4 (𝜑 → (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 0)
5954, 58eqtrd 2774 . . 3 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 0)
6059oveq2d 7218 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · 0))
61 etransclem15.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6261faccld 13833 . . . . 5 (𝜑 → (!‘𝑁) ∈ ℕ)
6362nncnd 11829 . . . 4 (𝜑 → (!‘𝑁) ∈ ℂ)
64 fzfid 13529 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
65 fzssnn0 42481 . . . . . . . 8 (0...𝑁) ⊆ ℕ0
6614ffvelrnda 6893 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
6765, 66sseldi 3889 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ ℕ0)
6867faccld 13833 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℕ)
6968nncnd 11829 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℂ)
7064, 69fprodcl 15495 . . . 4 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ∈ ℂ)
7168nnne0d 11863 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ≠ 0)
7264, 69, 71fprodn0 15522 . . . 4 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ≠ 0)
7363, 70, 72divcld 11591 . . 3 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℂ)
7473mul01d 11014 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · 0) = 0)
752, 60, 743eqtrd 2778 1 (𝜑𝑇 = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2935  ifcif 4429   class class class wbr 5043  wf 6365  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   · cmul 10717   < clt 10850  cmin 11045   / cdiv 11472  cn 11813  0cn0 12073  cz 12159  cuz 12421  ...cfz 13078  cexp 13618  !cfa 13822  cprod 15448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-prod 15449
This theorem is referenced by:  etransclem28  43432
  Copyright terms: Public domain W3C validator