Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem15 Structured version   Visualization version   GIF version

Theorem etransclem15 45870
Description: Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem15.p (𝜑𝑃 ∈ ℕ)
etransclem15.m (𝜑𝑀 ∈ ℕ0)
etransclem15.n (𝜑𝑁 ∈ ℕ0)
etransclem15.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem15.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem15.j (𝜑𝐽 = 0)
etransclem15.cpm1 (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))
Assertion
Ref Expression
etransclem15 (𝜑𝑇 = 0)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝑇(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem15
StepHypRef Expression
1 etransclem15.t . . 3 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
21a1i 11 . 2 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))))
3 iftrue 4539 . . . . . . 7 ((𝑃 − 1) < (𝐶‘0) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
43adantl 480 . . . . . 6 ((𝜑 ∧ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
5 iffalse 4542 . . . . . . . 8 (¬ (𝑃 − 1) < (𝐶‘0) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
65adantl 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
7 etransclem15.j . . . . . . . . . . 11 (𝜑𝐽 = 0)
87oveq1d 7439 . . . . . . . . . 10 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑((𝑃 − 1) − (𝐶‘0))))
98adantr 479 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑((𝑃 − 1) − (𝐶‘0))))
10 etransclem15.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
1110nnzd 12637 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℤ)
12 1zzd 12645 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
1311, 12zsubcld 12723 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℤ)
14 etransclem15.c . . . . . . . . . . . . . . 15 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
15 etransclem15.m . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
16 nn0uz 12916 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
1715, 16eleqtrdi 2836 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (ℤ‘0))
18 eluzfz1 13562 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
1917, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ (0...𝑀))
2014, 19ffvelcdmd 7099 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
2120elfzelzd 13556 . . . . . . . . . . . . 13 (𝜑 → (𝐶‘0) ∈ ℤ)
2213, 21zsubcld 12723 . . . . . . . . . . . 12 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
2322adantr 479 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
2421zred 12718 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘0) ∈ ℝ)
2524adantr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ∈ ℝ)
2613zred 12718 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ∈ ℝ)
2726adantr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ∈ ℝ)
28 simpr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ¬ (𝑃 − 1) < (𝐶‘0))
2925, 27, 28nltled 11414 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ≤ (𝑃 − 1))
30 etransclem15.cpm1 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))
3130necomd 2986 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ≠ (𝐶‘0))
3231adantr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ≠ (𝐶‘0))
3325, 27, 29, 32leneltd 11418 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) < (𝑃 − 1))
3425, 27posdifd 11851 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝐶‘0) < (𝑃 − 1) ↔ 0 < ((𝑃 − 1) − (𝐶‘0))))
3533, 34mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 < ((𝑃 − 1) − (𝐶‘0)))
36 elnnz 12620 . . . . . . . . . . 11 (((𝑃 − 1) − (𝐶‘0)) ∈ ℕ ↔ (((𝑃 − 1) − (𝐶‘0)) ∈ ℤ ∧ 0 < ((𝑃 − 1) − (𝐶‘0))))
3723, 35, 36sylanbrc 581 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ)
38370expd 14158 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0↑((𝑃 − 1) − (𝐶‘0))) = 0)
399, 38eqtrd 2766 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = 0)
4039oveq2d 7440 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · 0))
41 nnm1nn0 12565 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4210, 41syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℕ0)
4342faccld 14301 . . . . . . . . . . 11 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
4443nncnd 12280 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
4544adantr 479 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘(𝑃 − 1)) ∈ ℂ)
4637nnnn0d 12584 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0)
4746faccld 14301 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ∈ ℕ)
4847nncnd 12280 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ∈ ℂ)
4947nnne0d 12314 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ≠ 0)
5045, 48, 49divcld 12041 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℂ)
5150mul01d 11463 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · 0) = 0)
526, 40, 513eqtrd 2770 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
534, 52pm2.61dan 811 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
5453oveq1d 7439 . . . 4 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
557, 19eqeltrd 2826 . . . . . . 7 (𝜑𝐽 ∈ (0...𝑀))
5610, 14, 55etransclem7 45862 . . . . . 6 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
5756zcnd 12719 . . . . 5 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℂ)
5857mul02d 11462 . . . 4 (𝜑 → (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 0)
5954, 58eqtrd 2766 . . 3 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 0)
6059oveq2d 7440 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · 0))
61 etransclem15.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6261faccld 14301 . . . . 5 (𝜑 → (!‘𝑁) ∈ ℕ)
6362nncnd 12280 . . . 4 (𝜑 → (!‘𝑁) ∈ ℂ)
64 fzfid 13993 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
65 fzssnn0 44932 . . . . . . . 8 (0...𝑁) ⊆ ℕ0
6614ffvelcdmda 7098 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
6765, 66sselid 3977 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ ℕ0)
6867faccld 14301 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℕ)
6968nncnd 12280 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℂ)
7064, 69fprodcl 15954 . . . 4 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ∈ ℂ)
7168nnne0d 12314 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ≠ 0)
7264, 69, 71fprodn0 15981 . . . 4 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ≠ 0)
7363, 70, 72divcld 12041 . . 3 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℂ)
7473mul01d 11463 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · 0) = 0)
752, 60, 743eqtrd 2770 1 (𝜑𝑇 = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  ifcif 4533   class class class wbr 5153  wf 6550  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159   · cmul 11163   < clt 11298  cmin 11494   / cdiv 11921  cn 12264  0cn0 12524  cz 12610  cuz 12874  ...cfz 13538  cexp 14081  !cfa 14290  cprod 15907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-fac 14291  df-bc 14320  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-prod 15908
This theorem is referenced by:  etransclem28  45883
  Copyright terms: Public domain W3C validator