Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem15 Structured version   Visualization version   GIF version

Theorem etransclem15 42878
Description: Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem15.p (𝜑𝑃 ∈ ℕ)
etransclem15.m (𝜑𝑀 ∈ ℕ0)
etransclem15.n (𝜑𝑁 ∈ ℕ0)
etransclem15.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem15.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem15.j (𝜑𝐽 = 0)
etransclem15.cpm1 (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))
Assertion
Ref Expression
etransclem15 (𝜑𝑇 = 0)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝑇(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem15
StepHypRef Expression
1 etransclem15.t . . 3 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
21a1i 11 . 2 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))))
3 iftrue 4434 . . . . . . 7 ((𝑃 − 1) < (𝐶‘0) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
43adantl 485 . . . . . 6 ((𝜑 ∧ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
5 iffalse 4437 . . . . . . . 8 (¬ (𝑃 − 1) < (𝐶‘0) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
65adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
7 etransclem15.j . . . . . . . . . . 11 (𝜑𝐽 = 0)
87oveq1d 7154 . . . . . . . . . 10 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑((𝑃 − 1) − (𝐶‘0))))
98adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑((𝑃 − 1) − (𝐶‘0))))
10 etransclem15.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
1110nnzd 12078 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℤ)
12 1zzd 12005 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
1311, 12zsubcld 12084 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℤ)
14 etransclem15.c . . . . . . . . . . . . . . 15 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
15 etransclem15.m . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
16 nn0uz 12272 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
1715, 16eleqtrdi 2903 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (ℤ‘0))
18 eluzfz1 12913 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
1917, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ (0...𝑀))
2014, 19ffvelrnd 6833 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
2120elfzelzd 12907 . . . . . . . . . . . . 13 (𝜑 → (𝐶‘0) ∈ ℤ)
2213, 21zsubcld 12084 . . . . . . . . . . . 12 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
2322adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
2421zred 12079 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘0) ∈ ℝ)
2524adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ∈ ℝ)
2613zred 12079 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ∈ ℝ)
2726adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ∈ ℝ)
28 simpr 488 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ¬ (𝑃 − 1) < (𝐶‘0))
2925, 27, 28nltled 10783 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ≤ (𝑃 − 1))
30 etransclem15.cpm1 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))
3130necomd 3045 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ≠ (𝐶‘0))
3231adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ≠ (𝐶‘0))
3325, 27, 29, 32leneltd 10787 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) < (𝑃 − 1))
3425, 27posdifd 11220 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝐶‘0) < (𝑃 − 1) ↔ 0 < ((𝑃 − 1) − (𝐶‘0))))
3533, 34mpbid 235 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 < ((𝑃 − 1) − (𝐶‘0)))
36 elnnz 11983 . . . . . . . . . . 11 (((𝑃 − 1) − (𝐶‘0)) ∈ ℕ ↔ (((𝑃 − 1) − (𝐶‘0)) ∈ ℤ ∧ 0 < ((𝑃 − 1) − (𝐶‘0))))
3723, 35, 36sylanbrc 586 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ)
38370expd 13503 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0↑((𝑃 − 1) − (𝐶‘0))) = 0)
399, 38eqtrd 2836 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = 0)
4039oveq2d 7155 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · 0))
41 nnm1nn0 11930 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4210, 41syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℕ0)
4342faccld 13644 . . . . . . . . . . 11 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
4443nncnd 11645 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
4544adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘(𝑃 − 1)) ∈ ℂ)
4637nnnn0d 11947 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0)
4746faccld 13644 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ∈ ℕ)
4847nncnd 11645 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ∈ ℂ)
4947nnne0d 11679 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ≠ 0)
5045, 48, 49divcld 11409 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℂ)
5150mul01d 10832 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · 0) = 0)
526, 40, 513eqtrd 2840 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
534, 52pm2.61dan 812 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
5453oveq1d 7154 . . . 4 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
557, 19eqeltrd 2893 . . . . . . 7 (𝜑𝐽 ∈ (0...𝑀))
5610, 14, 55etransclem7 42870 . . . . . 6 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
5756zcnd 12080 . . . . 5 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℂ)
5857mul02d 10831 . . . 4 (𝜑 → (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 0)
5954, 58eqtrd 2836 . . 3 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 0)
6059oveq2d 7155 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · 0))
61 etransclem15.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6261faccld 13644 . . . . 5 (𝜑 → (!‘𝑁) ∈ ℕ)
6362nncnd 11645 . . . 4 (𝜑 → (!‘𝑁) ∈ ℂ)
64 fzfid 13340 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
65 fzssnn0 41936 . . . . . . . 8 (0...𝑁) ⊆ ℕ0
6614ffvelrnda 6832 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
6765, 66sseldi 3916 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ ℕ0)
6867faccld 13644 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℕ)
6968nncnd 11645 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℂ)
7064, 69fprodcl 15301 . . . 4 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ∈ ℂ)
7168nnne0d 11679 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ≠ 0)
7264, 69, 71fprodn0 15328 . . . 4 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ≠ 0)
7363, 70, 72divcld 11409 . . 3 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℂ)
7473mul01d 10832 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · 0) = 0)
752, 60, 743eqtrd 2840 1 (𝜑𝑇 = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  ifcif 4428   class class class wbr 5033  wf 6324  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   · cmul 10535   < clt 10668  cmin 10863   / cdiv 11290  cn 11629  0cn0 11889  cz 11973  cuz 12235  ...cfz 12889  cexp 13429  !cfa 13633  cprod 15254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-prod 15255
This theorem is referenced by:  etransclem28  42891
  Copyright terms: Public domain W3C validator