Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem15 Structured version   Visualization version   GIF version

Theorem etransclem15 46204
Description: Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem15.p (𝜑𝑃 ∈ ℕ)
etransclem15.m (𝜑𝑀 ∈ ℕ0)
etransclem15.n (𝜑𝑁 ∈ ℕ0)
etransclem15.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem15.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem15.j (𝜑𝐽 = 0)
etransclem15.cpm1 (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))
Assertion
Ref Expression
etransclem15 (𝜑𝑇 = 0)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝑇(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem15
StepHypRef Expression
1 etransclem15.t . . 3 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
21a1i 11 . 2 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))))
3 iftrue 4536 . . . . . . 7 ((𝑃 − 1) < (𝐶‘0) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
43adantl 481 . . . . . 6 ((𝜑 ∧ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
5 iffalse 4539 . . . . . . . 8 (¬ (𝑃 − 1) < (𝐶‘0) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
65adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
7 etransclem15.j . . . . . . . . . . 11 (𝜑𝐽 = 0)
87oveq1d 7445 . . . . . . . . . 10 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑((𝑃 − 1) − (𝐶‘0))))
98adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑((𝑃 − 1) − (𝐶‘0))))
10 etransclem15.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
1110nnzd 12637 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℤ)
12 1zzd 12645 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
1311, 12zsubcld 12724 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℤ)
14 etransclem15.c . . . . . . . . . . . . . . 15 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
15 etransclem15.m . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
16 nn0uz 12917 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
1715, 16eleqtrdi 2848 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (ℤ‘0))
18 eluzfz1 13567 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
1917, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ (0...𝑀))
2014, 19ffvelcdmd 7104 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
2120elfzelzd 13561 . . . . . . . . . . . . 13 (𝜑 → (𝐶‘0) ∈ ℤ)
2213, 21zsubcld 12724 . . . . . . . . . . . 12 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
2322adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
2421zred 12719 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘0) ∈ ℝ)
2524adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ∈ ℝ)
2613zred 12719 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ∈ ℝ)
2726adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ∈ ℝ)
28 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ¬ (𝑃 − 1) < (𝐶‘0))
2925, 27, 28nltled 11408 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ≤ (𝑃 − 1))
30 etransclem15.cpm1 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))
3130necomd 2993 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ≠ (𝐶‘0))
3231adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ≠ (𝐶‘0))
3325, 27, 29, 32leneltd 11412 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) < (𝑃 − 1))
3425, 27posdifd 11847 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝐶‘0) < (𝑃 − 1) ↔ 0 < ((𝑃 − 1) − (𝐶‘0))))
3533, 34mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 < ((𝑃 − 1) − (𝐶‘0)))
36 elnnz 12620 . . . . . . . . . . 11 (((𝑃 − 1) − (𝐶‘0)) ∈ ℕ ↔ (((𝑃 − 1) − (𝐶‘0)) ∈ ℤ ∧ 0 < ((𝑃 − 1) − (𝐶‘0))))
3723, 35, 36sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ)
38370expd 14175 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0↑((𝑃 − 1) − (𝐶‘0))) = 0)
399, 38eqtrd 2774 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = 0)
4039oveq2d 7446 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · 0))
41 nnm1nn0 12564 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4210, 41syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℕ0)
4342faccld 14319 . . . . . . . . . . 11 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
4443nncnd 12279 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
4544adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘(𝑃 − 1)) ∈ ℂ)
4637nnnn0d 12584 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0)
4746faccld 14319 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ∈ ℕ)
4847nncnd 12279 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ∈ ℂ)
4947nnne0d 12313 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ≠ 0)
5045, 48, 49divcld 12040 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℂ)
5150mul01d 11457 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · 0) = 0)
526, 40, 513eqtrd 2778 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
534, 52pm2.61dan 813 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
5453oveq1d 7445 . . . 4 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
557, 19eqeltrd 2838 . . . . . . 7 (𝜑𝐽 ∈ (0...𝑀))
5610, 14, 55etransclem7 46196 . . . . . 6 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
5756zcnd 12720 . . . . 5 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℂ)
5857mul02d 11456 . . . 4 (𝜑 → (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 0)
5954, 58eqtrd 2774 . . 3 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 0)
6059oveq2d 7446 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · 0))
61 etransclem15.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6261faccld 14319 . . . . 5 (𝜑 → (!‘𝑁) ∈ ℕ)
6362nncnd 12279 . . . 4 (𝜑 → (!‘𝑁) ∈ ℂ)
64 fzfid 14010 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
65 fzssnn0 45267 . . . . . . . 8 (0...𝑁) ⊆ ℕ0
6614ffvelcdmda 7103 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
6765, 66sselid 3992 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ ℕ0)
6867faccld 14319 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℕ)
6968nncnd 12279 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℂ)
7064, 69fprodcl 15984 . . . 4 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ∈ ℂ)
7168nnne0d 12313 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ≠ 0)
7264, 69, 71fprodn0 16011 . . . 4 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ≠ 0)
7363, 70, 72divcld 12040 . . 3 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℂ)
7473mul01d 11457 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · 0) = 0)
752, 60, 743eqtrd 2778 1 (𝜑𝑇 = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  ifcif 4530   class class class wbr 5147  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157   < clt 11292  cmin 11489   / cdiv 11917  cn 12263  0cn0 12523  cz 12610  cuz 12875  ...cfz 13543  cexp 14098  !cfa 14308  cprod 15935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-prod 15936
This theorem is referenced by:  etransclem28  46217
  Copyright terms: Public domain W3C validator