Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem15 Structured version   Visualization version   GIF version

Theorem etransclem15 42541
Description: Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem15.p (𝜑𝑃 ∈ ℕ)
etransclem15.m (𝜑𝑀 ∈ ℕ0)
etransclem15.n (𝜑𝑁 ∈ ℕ0)
etransclem15.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem15.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
etransclem15.j (𝜑𝐽 = 0)
etransclem15.cpm1 (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))
Assertion
Ref Expression
etransclem15 (𝜑𝑇 = 0)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑃(𝑗)   𝑇(𝑗)   𝐽(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem15
StepHypRef Expression
1 etransclem15.t . . 3 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
21a1i 11 . 2 (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))))
3 iftrue 4475 . . . . . . 7 ((𝑃 − 1) < (𝐶‘0) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
43adantl 484 . . . . . 6 ((𝜑 ∧ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
5 iffalse 4478 . . . . . . . 8 (¬ (𝑃 − 1) < (𝐶‘0) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
65adantl 484 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))))
7 etransclem15.j . . . . . . . . . . 11 (𝜑𝐽 = 0)
87oveq1d 7173 . . . . . . . . . 10 (𝜑 → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑((𝑃 − 1) − (𝐶‘0))))
98adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = (0↑((𝑃 − 1) − (𝐶‘0))))
10 etransclem15.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
1110nnzd 12089 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℤ)
12 1zzd 12016 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
1311, 12zsubcld 12095 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℤ)
14 etransclem15.c . . . . . . . . . . . . . . 15 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
15 etransclem15.m . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
16 nn0uz 12283 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
1715, 16eleqtrdi 2925 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (ℤ‘0))
18 eluzfz1 12917 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
1917, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ (0...𝑀))
2014, 19ffvelrnd 6854 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
2120elfzelzd 41589 . . . . . . . . . . . . 13 (𝜑 → (𝐶‘0) ∈ ℤ)
2213, 21zsubcld 12095 . . . . . . . . . . . 12 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
2322adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
2421zred 12090 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘0) ∈ ℝ)
2524adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ∈ ℝ)
2613zred 12090 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ∈ ℝ)
2726adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ∈ ℝ)
28 simpr 487 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ¬ (𝑃 − 1) < (𝐶‘0))
2925, 27, 28nltled 10792 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ≤ (𝑃 − 1))
30 etransclem15.cpm1 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))
3130necomd 3073 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ≠ (𝐶‘0))
3231adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ≠ (𝐶‘0))
3325, 27, 29, 32leneltd 10796 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) < (𝑃 − 1))
3425, 27posdifd 11229 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝐶‘0) < (𝑃 − 1) ↔ 0 < ((𝑃 − 1) − (𝐶‘0))))
3533, 34mpbid 234 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 < ((𝑃 − 1) − (𝐶‘0)))
36 elnnz 11994 . . . . . . . . . . 11 (((𝑃 − 1) − (𝐶‘0)) ∈ ℕ ↔ (((𝑃 − 1) − (𝐶‘0)) ∈ ℤ ∧ 0 < ((𝑃 − 1) − (𝐶‘0))))
3723, 35, 36sylanbrc 585 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ)
38370expd 13506 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0↑((𝑃 − 1) − (𝐶‘0))) = 0)
399, 38eqtrd 2858 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) = 0)
4039oveq2d 7174 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · 0))
41 nnm1nn0 11941 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4210, 41syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℕ0)
4342faccld 13647 . . . . . . . . . . 11 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
4443nncnd 11656 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
4544adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘(𝑃 − 1)) ∈ ℂ)
4637nnnn0d 11958 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0)
4746faccld 13647 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ∈ ℕ)
4847nncnd 11656 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ∈ ℂ)
4947nnne0d 11690 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (!‘((𝑃 − 1) − (𝐶‘0))) ≠ 0)
5045, 48, 49divcld 11418 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℂ)
5150mul01d 10841 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · 0) = 0)
526, 40, 513eqtrd 2862 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
534, 52pm2.61dan 811 . . . . 5 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) = 0)
5453oveq1d 7173 . . . 4 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))
557, 19eqeltrd 2915 . . . . . . 7 (𝜑𝐽 ∈ (0...𝑀))
5610, 14, 55etransclem7 42533 . . . . . 6 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)
5756zcnd 12091 . . . . 5 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℂ)
5857mul02d 10840 . . . 4 (𝜑 → (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 0)
5954, 58eqtrd 2858 . . 3 (𝜑 → (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))) = 0)
6059oveq2d 7174 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · 0))
61 etransclem15.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6261faccld 13647 . . . . 5 (𝜑 → (!‘𝑁) ∈ ℕ)
6362nncnd 11656 . . . 4 (𝜑 → (!‘𝑁) ∈ ℂ)
64 fzfid 13344 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
65 fzssnn0 41592 . . . . . . . 8 (0...𝑁) ⊆ ℕ0
6614ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ (0...𝑁))
6765, 66sseldi 3967 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐶𝑗) ∈ ℕ0)
6867faccld 13647 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℕ)
6968nncnd 11656 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ∈ ℂ)
7064, 69fprodcl 15308 . . . 4 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ∈ ℂ)
7168nnne0d 11690 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐶𝑗)) ≠ 0)
7264, 69, 71fprodn0 15335 . . . 4 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗)) ≠ 0)
7363, 70, 72divcld 11418 . . 3 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) ∈ ℂ)
7473mul01d 10841 . 2 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · 0) = 0)
752, 60, 743eqtrd 2862 1 (𝜑𝑇 = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  ifcif 4469   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  cexp 13432  !cfa 13636  cprod 15261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-prod 15262
This theorem is referenced by:  etransclem28  42554
  Copyright terms: Public domain W3C validator