Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt30 Structured version   Visualization version   GIF version

Theorem metakunt30 39828
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt30.1 (𝜑𝑀 ∈ ℕ)
metakunt30.2 (𝜑𝐼 ∈ ℕ)
metakunt30.3 (𝜑𝐼𝑀)
metakunt30.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt30.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt30.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt30.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt30.8 (𝜑 → ¬ 𝑋 < 𝐼)
metakunt30.9 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt30.10 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
Assertion
Ref Expression
metakunt30 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
Distinct variable groups:   𝑦,𝐻   𝑦,𝐼   𝑧,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝑦,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt30
StepHypRef Expression
1 metakunt30.1 . . . 4 (𝜑𝑀 ∈ ℕ)
2 metakunt30.2 . . . 4 (𝜑𝐼 ∈ ℕ)
3 metakunt30.3 . . . 4 (𝜑𝐼𝑀)
4 metakunt30.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
5 metakunt30.5 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
6 metakunt30.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
7 metakunt30.7 . . . 4 (𝜑 → ¬ 𝑋 = 𝐼)
8 metakunt30.8 . . . 4 (𝜑 → ¬ 𝑋 < 𝐼)
91, 2, 3, 4, 5, 6, 7, 8metakunt28 39826 . . 3 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
109fveq2d 6710 . 2 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = (𝐶‘(𝑋𝐼)))
11 metakunt30.9 . . . 4 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1211a1i 11 . . 3 (𝜑𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
13 elfznn 13124 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
144, 13syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ)
15 nnre 11820 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
1614, 15syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
172nnred 11828 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
1816, 17resubcld 11243 . . . . . . . . 9 (𝜑 → (𝑋𝐼) ∈ ℝ)
191nnred 11828 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2019, 17resubcld 11243 . . . . . . . . . 10 (𝜑 → (𝑀𝐼) ∈ ℝ)
21 elfzle2 13099 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
224, 21syl 17 . . . . . . . . . . 11 (𝜑𝑋𝑀)
2316, 19, 17, 22lesub1dd 11431 . . . . . . . . . 10 (𝜑 → (𝑋𝐼) ≤ (𝑀𝐼))
242nnrpd 12609 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ+)
2519, 24ltsubrpd 12643 . . . . . . . . . 10 (𝜑 → (𝑀𝐼) < 𝑀)
2618, 20, 19, 23, 25lelttrd 10973 . . . . . . . . 9 (𝜑 → (𝑋𝐼) < 𝑀)
2718, 26ltned 10951 . . . . . . . 8 (𝜑 → (𝑋𝐼) ≠ 𝑀)
2827adantr 484 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼)) → (𝑋𝐼) ≠ 𝑀)
29 neeq1 2997 . . . . . . . 8 (𝑦 = (𝑋𝐼) → (𝑦𝑀 ↔ (𝑋𝐼) ≠ 𝑀))
3029adantl 485 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼)) → (𝑦𝑀 ↔ (𝑋𝐼) ≠ 𝑀))
3128, 30mpbird 260 . . . . . 6 ((𝜑𝑦 = (𝑋𝐼)) → 𝑦𝑀)
3231neneqd 2940 . . . . 5 ((𝜑𝑦 = (𝑋𝐼)) → ¬ 𝑦 = 𝑀)
3332iffalsed 4440 . . . 4 ((𝜑𝑦 = (𝑋𝐼)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))
3417, 18lenltd 10961 . . . . . . . . . . 11 (𝜑 → (𝐼 ≤ (𝑋𝐼) ↔ ¬ (𝑋𝐼) < 𝐼))
3534biimpa 480 . . . . . . . . . 10 ((𝜑𝐼 ≤ (𝑋𝐼)) → ¬ (𝑋𝐼) < 𝐼)
36353adant2 1133 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → ¬ (𝑋𝐼) < 𝐼)
37 breq1 5046 . . . . . . . . . 10 (𝑦 = (𝑋𝐼) → (𝑦 < 𝐼 ↔ (𝑋𝐼) < 𝐼))
38373ad2ant2 1136 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → (𝑦 < 𝐼 ↔ (𝑋𝐼) < 𝐼))
3936, 38mtbird 328 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → ¬ 𝑦 < 𝐼)
4039iffalsed 4440 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = (𝑦 + 1))
41 simp2 1139 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 𝑦 = (𝑋𝐼))
4241oveq1d 7217 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → (𝑦 + 1) = ((𝑋𝐼) + 1))
43 simp3 1140 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 𝐼 ≤ (𝑋𝐼))
4443iftrued 4437 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 1)
4544eqcomd 2740 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 1 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
46 metakunt30.10 . . . . . . . . . . . 12 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
4746a1i 11 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
4847eqcomd 2740 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 𝐻)
4945, 48eqtrd 2774 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 1 = 𝐻)
5049oveq2d 7218 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) + 1) = ((𝑋𝐼) + 𝐻))
5142, 50eqtrd 2774 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → (𝑦 + 1) = ((𝑋𝐼) + 𝐻))
5240, 51eqtrd 2774 . . . . . 6 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
53523expa 1120 . . . . 5 (((𝜑𝑦 = (𝑋𝐼)) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
54 simpr 488 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ¬ 𝐼 ≤ (𝑋𝐼))
5518adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) ∈ ℝ)
5617adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐼 ∈ ℝ)
5755, 56ltnled 10962 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) < 𝐼 ↔ ¬ 𝐼 ≤ (𝑋𝐼)))
5854, 57mpbird 260 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) < 𝐼)
59583adant2 1133 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) < 𝐼)
60373ad2ant2 1136 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑦 < 𝐼 ↔ (𝑋𝐼) < 𝐼))
6159, 60mpbird 260 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑦 < 𝐼)
6261iftrued 4437 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = 𝑦)
63 simp2 1139 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑦 = (𝑋𝐼))
64 nncn 11821 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → 𝑋 ∈ ℂ)
6514, 64syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
66653ad2ant1 1135 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑋 ∈ ℂ)
672nncnd 11829 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
68673ad2ant1 1135 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐼 ∈ ℂ)
6966, 68subcld 11172 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) ∈ ℂ)
7069addid1d 11015 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) + 0) = (𝑋𝐼))
7170eqcomd 2740 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) = ((𝑋𝐼) + 0))
7246a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
73 simp3 1140 . . . . . . . . . . . . 13 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ¬ 𝐼 ≤ (𝑋𝐼))
7473iffalsed 4440 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 0)
7572, 74eqtrd 2774 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐻 = 0)
7675eqcomd 2740 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 0 = 𝐻)
7776oveq2d 7218 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) + 0) = ((𝑋𝐼) + 𝐻))
7871, 77eqtrd 2774 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) = ((𝑋𝐼) + 𝐻))
7963, 78eqtrd 2774 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑦 = ((𝑋𝐼) + 𝐻))
8062, 79eqtrd 2774 . . . . . 6 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
81803expa 1120 . . . . 5 (((𝜑𝑦 = (𝑋𝐼)) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
8253, 81pm2.61dan 813 . . . 4 ((𝜑𝑦 = (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
8333, 82eqtrd 2774 . . 3 ((𝜑𝑦 = (𝑋𝐼)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = ((𝑋𝐼) + 𝐻))
84 1zzd 12191 . . . 4 (𝜑 → 1 ∈ ℤ)
851nnzd 12264 . . . 4 (𝜑𝑀 ∈ ℤ)
8614nnzd 12264 . . . . 5 (𝜑𝑋 ∈ ℤ)
872nnzd 12264 . . . . 5 (𝜑𝐼 ∈ ℤ)
8886, 87zsubcld 12270 . . . 4 (𝜑 → (𝑋𝐼) ∈ ℤ)
89 1m1e0 11885 . . . . . 6 (1 − 1) = 0
9017, 16, 8nltled 10965 . . . . . . . . 9 (𝜑𝐼𝑋)
917neqned 2942 . . . . . . . . 9 (𝜑𝑋𝐼)
9290, 91jca 515 . . . . . . . 8 (𝜑 → (𝐼𝑋𝑋𝐼))
9317, 16ltlend 10960 . . . . . . . 8 (𝜑 → (𝐼 < 𝑋 ↔ (𝐼𝑋𝑋𝐼)))
9492, 93mpbird 260 . . . . . . 7 (𝜑𝐼 < 𝑋)
9517, 16posdifd 11402 . . . . . . 7 (𝜑 → (𝐼 < 𝑋 ↔ 0 < (𝑋𝐼)))
9694, 95mpbid 235 . . . . . 6 (𝜑 → 0 < (𝑋𝐼))
9789, 96eqbrtrid 5078 . . . . 5 (𝜑 → (1 − 1) < (𝑋𝐼))
98 zlem1lt 12212 . . . . . 6 ((1 ∈ ℤ ∧ (𝑋𝐼) ∈ ℤ) → (1 ≤ (𝑋𝐼) ↔ (1 − 1) < (𝑋𝐼)))
9984, 88, 98syl2anc 587 . . . . 5 (𝜑 → (1 ≤ (𝑋𝐼) ↔ (1 − 1) < (𝑋𝐼)))
10097, 99mpbird 260 . . . 4 (𝜑 → 1 ≤ (𝑋𝐼))
10118, 19, 26ltled 10963 . . . 4 (𝜑 → (𝑋𝐼) ≤ 𝑀)
10284, 85, 88, 100, 101elfzd 13086 . . 3 (𝜑 → (𝑋𝐼) ∈ (1...𝑀))
103 0zd 12171 . . . . . 6 (𝜑 → 0 ∈ ℤ)
10484, 103ifcld 4475 . . . . 5 (𝜑 → if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ)
10546a1i 11 . . . . . 6 (𝜑𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
106105eleq1d 2818 . . . . 5 (𝜑 → (𝐻 ∈ ℤ ↔ if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ))
107104, 106mpbird 260 . . . 4 (𝜑𝐻 ∈ ℤ)
10888, 107zaddcld 12269 . . 3 (𝜑 → ((𝑋𝐼) + 𝐻) ∈ ℤ)
10912, 83, 102, 108fvmptd 6814 . 2 (𝜑 → (𝐶‘(𝑋𝐼)) = ((𝑋𝐼) + 𝐻))
11010, 109eqtrd 2774 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  ifcif 4429   class class class wbr 5043  cmpt 5124  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   < clt 10850  cle 10851  cmin 11045  cn 11813  cz 12159  ...cfz 13078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079
This theorem is referenced by:  metakunt31  39829
  Copyright terms: Public domain W3C validator