Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt30 Structured version   Visualization version   GIF version

Theorem metakunt30 40606
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt30.1 (𝜑𝑀 ∈ ℕ)
metakunt30.2 (𝜑𝐼 ∈ ℕ)
metakunt30.3 (𝜑𝐼𝑀)
metakunt30.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt30.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt30.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt30.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt30.8 (𝜑 → ¬ 𝑋 < 𝐼)
metakunt30.9 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt30.10 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
Assertion
Ref Expression
metakunt30 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
Distinct variable groups:   𝑦,𝐻   𝑦,𝐼   𝑧,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝑦,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt30
StepHypRef Expression
1 metakunt30.1 . . . 4 (𝜑𝑀 ∈ ℕ)
2 metakunt30.2 . . . 4 (𝜑𝐼 ∈ ℕ)
3 metakunt30.3 . . . 4 (𝜑𝐼𝑀)
4 metakunt30.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
5 metakunt30.5 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
6 metakunt30.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
7 metakunt30.7 . . . 4 (𝜑 → ¬ 𝑋 = 𝐼)
8 metakunt30.8 . . . 4 (𝜑 → ¬ 𝑋 < 𝐼)
91, 2, 3, 4, 5, 6, 7, 8metakunt28 40604 . . 3 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
109fveq2d 6846 . 2 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = (𝐶‘(𝑋𝐼)))
11 metakunt30.9 . . . 4 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1211a1i 11 . . 3 (𝜑𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
13 elfznn 13470 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
144, 13syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ)
15 nnre 12160 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
1614, 15syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
172nnred 12168 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
1816, 17resubcld 11583 . . . . . . . . 9 (𝜑 → (𝑋𝐼) ∈ ℝ)
191nnred 12168 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2019, 17resubcld 11583 . . . . . . . . . 10 (𝜑 → (𝑀𝐼) ∈ ℝ)
21 elfzle2 13445 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
224, 21syl 17 . . . . . . . . . . 11 (𝜑𝑋𝑀)
2316, 19, 17, 22lesub1dd 11771 . . . . . . . . . 10 (𝜑 → (𝑋𝐼) ≤ (𝑀𝐼))
242nnrpd 12955 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ+)
2519, 24ltsubrpd 12989 . . . . . . . . . 10 (𝜑 → (𝑀𝐼) < 𝑀)
2618, 20, 19, 23, 25lelttrd 11313 . . . . . . . . 9 (𝜑 → (𝑋𝐼) < 𝑀)
2718, 26ltned 11291 . . . . . . . 8 (𝜑 → (𝑋𝐼) ≠ 𝑀)
2827adantr 481 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼)) → (𝑋𝐼) ≠ 𝑀)
29 neeq1 3006 . . . . . . . 8 (𝑦 = (𝑋𝐼) → (𝑦𝑀 ↔ (𝑋𝐼) ≠ 𝑀))
3029adantl 482 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼)) → (𝑦𝑀 ↔ (𝑋𝐼) ≠ 𝑀))
3128, 30mpbird 256 . . . . . 6 ((𝜑𝑦 = (𝑋𝐼)) → 𝑦𝑀)
3231neneqd 2948 . . . . 5 ((𝜑𝑦 = (𝑋𝐼)) → ¬ 𝑦 = 𝑀)
3332iffalsed 4497 . . . 4 ((𝜑𝑦 = (𝑋𝐼)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))
3417, 18lenltd 11301 . . . . . . . . . . 11 (𝜑 → (𝐼 ≤ (𝑋𝐼) ↔ ¬ (𝑋𝐼) < 𝐼))
3534biimpa 477 . . . . . . . . . 10 ((𝜑𝐼 ≤ (𝑋𝐼)) → ¬ (𝑋𝐼) < 𝐼)
36353adant2 1131 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → ¬ (𝑋𝐼) < 𝐼)
37 breq1 5108 . . . . . . . . . 10 (𝑦 = (𝑋𝐼) → (𝑦 < 𝐼 ↔ (𝑋𝐼) < 𝐼))
38373ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → (𝑦 < 𝐼 ↔ (𝑋𝐼) < 𝐼))
3936, 38mtbird 324 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → ¬ 𝑦 < 𝐼)
4039iffalsed 4497 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = (𝑦 + 1))
41 simp2 1137 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 𝑦 = (𝑋𝐼))
4241oveq1d 7372 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → (𝑦 + 1) = ((𝑋𝐼) + 1))
43 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 𝐼 ≤ (𝑋𝐼))
4443iftrued 4494 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 1)
4544eqcomd 2742 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 1 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
46 metakunt30.10 . . . . . . . . . . . 12 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
4746a1i 11 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
4847eqcomd 2742 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 𝐻)
4945, 48eqtrd 2776 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 1 = 𝐻)
5049oveq2d 7373 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) + 1) = ((𝑋𝐼) + 𝐻))
5142, 50eqtrd 2776 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → (𝑦 + 1) = ((𝑋𝐼) + 𝐻))
5240, 51eqtrd 2776 . . . . . 6 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
53523expa 1118 . . . . 5 (((𝜑𝑦 = (𝑋𝐼)) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
54 simpr 485 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ¬ 𝐼 ≤ (𝑋𝐼))
5518adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) ∈ ℝ)
5617adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐼 ∈ ℝ)
5755, 56ltnled 11302 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) < 𝐼 ↔ ¬ 𝐼 ≤ (𝑋𝐼)))
5854, 57mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) < 𝐼)
59583adant2 1131 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) < 𝐼)
60373ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑦 < 𝐼 ↔ (𝑋𝐼) < 𝐼))
6159, 60mpbird 256 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑦 < 𝐼)
6261iftrued 4494 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = 𝑦)
63 simp2 1137 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑦 = (𝑋𝐼))
64 nncn 12161 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → 𝑋 ∈ ℂ)
6514, 64syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
66653ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑋 ∈ ℂ)
672nncnd 12169 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
68673ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐼 ∈ ℂ)
6966, 68subcld 11512 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) ∈ ℂ)
7069addid1d 11355 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) + 0) = (𝑋𝐼))
7170eqcomd 2742 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) = ((𝑋𝐼) + 0))
7246a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
73 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ¬ 𝐼 ≤ (𝑋𝐼))
7473iffalsed 4497 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 0)
7572, 74eqtrd 2776 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐻 = 0)
7675eqcomd 2742 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 0 = 𝐻)
7776oveq2d 7373 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) + 0) = ((𝑋𝐼) + 𝐻))
7871, 77eqtrd 2776 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) = ((𝑋𝐼) + 𝐻))
7963, 78eqtrd 2776 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑦 = ((𝑋𝐼) + 𝐻))
8062, 79eqtrd 2776 . . . . . 6 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
81803expa 1118 . . . . 5 (((𝜑𝑦 = (𝑋𝐼)) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
8253, 81pm2.61dan 811 . . . 4 ((𝜑𝑦 = (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
8333, 82eqtrd 2776 . . 3 ((𝜑𝑦 = (𝑋𝐼)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = ((𝑋𝐼) + 𝐻))
84 1zzd 12534 . . . 4 (𝜑 → 1 ∈ ℤ)
851nnzd 12526 . . . 4 (𝜑𝑀 ∈ ℤ)
8614nnzd 12526 . . . . 5 (𝜑𝑋 ∈ ℤ)
872nnzd 12526 . . . . 5 (𝜑𝐼 ∈ ℤ)
8886, 87zsubcld 12612 . . . 4 (𝜑 → (𝑋𝐼) ∈ ℤ)
89 1m1e0 12225 . . . . . 6 (1 − 1) = 0
9017, 16, 8nltled 11305 . . . . . . . . 9 (𝜑𝐼𝑋)
917neqned 2950 . . . . . . . . 9 (𝜑𝑋𝐼)
9290, 91jca 512 . . . . . . . 8 (𝜑 → (𝐼𝑋𝑋𝐼))
9317, 16ltlend 11300 . . . . . . . 8 (𝜑 → (𝐼 < 𝑋 ↔ (𝐼𝑋𝑋𝐼)))
9492, 93mpbird 256 . . . . . . 7 (𝜑𝐼 < 𝑋)
9517, 16posdifd 11742 . . . . . . 7 (𝜑 → (𝐼 < 𝑋 ↔ 0 < (𝑋𝐼)))
9694, 95mpbid 231 . . . . . 6 (𝜑 → 0 < (𝑋𝐼))
9789, 96eqbrtrid 5140 . . . . 5 (𝜑 → (1 − 1) < (𝑋𝐼))
98 zlem1lt 12555 . . . . . 6 ((1 ∈ ℤ ∧ (𝑋𝐼) ∈ ℤ) → (1 ≤ (𝑋𝐼) ↔ (1 − 1) < (𝑋𝐼)))
9984, 88, 98syl2anc 584 . . . . 5 (𝜑 → (1 ≤ (𝑋𝐼) ↔ (1 − 1) < (𝑋𝐼)))
10097, 99mpbird 256 . . . 4 (𝜑 → 1 ≤ (𝑋𝐼))
10118, 19, 26ltled 11303 . . . 4 (𝜑 → (𝑋𝐼) ≤ 𝑀)
10284, 85, 88, 100, 101elfzd 13432 . . 3 (𝜑 → (𝑋𝐼) ∈ (1...𝑀))
103 0zd 12511 . . . . . 6 (𝜑 → 0 ∈ ℤ)
10484, 103ifcld 4532 . . . . 5 (𝜑 → if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ)
10546a1i 11 . . . . . 6 (𝜑𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
106105eleq1d 2822 . . . . 5 (𝜑 → (𝐻 ∈ ℤ ↔ if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ))
107104, 106mpbird 256 . . . 4 (𝜑𝐻 ∈ ℤ)
10888, 107zaddcld 12611 . . 3 (𝜑 → ((𝑋𝐼) + 𝐻) ∈ ℤ)
10912, 83, 102, 108fvmptd 6955 . 2 (𝜑 → (𝐶‘(𝑋𝐼)) = ((𝑋𝐼) + 𝐻))
11010, 109eqtrd 2776 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  ifcif 4486   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cn 12153  cz 12499  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425
This theorem is referenced by:  metakunt31  40607
  Copyright terms: Public domain W3C validator