Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt30 Structured version   Visualization version   GIF version

Theorem metakunt30 41580
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt30.1 (𝜑𝑀 ∈ ℕ)
metakunt30.2 (𝜑𝐼 ∈ ℕ)
metakunt30.3 (𝜑𝐼𝑀)
metakunt30.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt30.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt30.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt30.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt30.8 (𝜑 → ¬ 𝑋 < 𝐼)
metakunt30.9 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt30.10 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
Assertion
Ref Expression
metakunt30 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
Distinct variable groups:   𝑦,𝐻   𝑦,𝐼   𝑧,𝐼   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝑥,𝑋   𝑦,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt30
StepHypRef Expression
1 metakunt30.1 . . . 4 (𝜑𝑀 ∈ ℕ)
2 metakunt30.2 . . . 4 (𝜑𝐼 ∈ ℕ)
3 metakunt30.3 . . . 4 (𝜑𝐼𝑀)
4 metakunt30.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
5 metakunt30.5 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
6 metakunt30.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
7 metakunt30.7 . . . 4 (𝜑 → ¬ 𝑋 = 𝐼)
8 metakunt30.8 . . . 4 (𝜑 → ¬ 𝑋 < 𝐼)
91, 2, 3, 4, 5, 6, 7, 8metakunt28 41578 . . 3 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
109fveq2d 6889 . 2 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = (𝐶‘(𝑋𝐼)))
11 metakunt30.9 . . . 4 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
1211a1i 11 . . 3 (𝜑𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))))
13 elfznn 13536 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
144, 13syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ)
15 nnre 12223 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
1614, 15syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
172nnred 12231 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
1816, 17resubcld 11646 . . . . . . . . 9 (𝜑 → (𝑋𝐼) ∈ ℝ)
191nnred 12231 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2019, 17resubcld 11646 . . . . . . . . . 10 (𝜑 → (𝑀𝐼) ∈ ℝ)
21 elfzle2 13511 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
224, 21syl 17 . . . . . . . . . . 11 (𝜑𝑋𝑀)
2316, 19, 17, 22lesub1dd 11834 . . . . . . . . . 10 (𝜑 → (𝑋𝐼) ≤ (𝑀𝐼))
242nnrpd 13020 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ+)
2519, 24ltsubrpd 13054 . . . . . . . . . 10 (𝜑 → (𝑀𝐼) < 𝑀)
2618, 20, 19, 23, 25lelttrd 11376 . . . . . . . . 9 (𝜑 → (𝑋𝐼) < 𝑀)
2718, 26ltned 11354 . . . . . . . 8 (𝜑 → (𝑋𝐼) ≠ 𝑀)
2827adantr 480 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼)) → (𝑋𝐼) ≠ 𝑀)
29 neeq1 2997 . . . . . . . 8 (𝑦 = (𝑋𝐼) → (𝑦𝑀 ↔ (𝑋𝐼) ≠ 𝑀))
3029adantl 481 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼)) → (𝑦𝑀 ↔ (𝑋𝐼) ≠ 𝑀))
3128, 30mpbird 257 . . . . . 6 ((𝜑𝑦 = (𝑋𝐼)) → 𝑦𝑀)
3231neneqd 2939 . . . . 5 ((𝜑𝑦 = (𝑋𝐼)) → ¬ 𝑦 = 𝑀)
3332iffalsed 4534 . . . 4 ((𝜑𝑦 = (𝑋𝐼)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))
3417, 18lenltd 11364 . . . . . . . . . . 11 (𝜑 → (𝐼 ≤ (𝑋𝐼) ↔ ¬ (𝑋𝐼) < 𝐼))
3534biimpa 476 . . . . . . . . . 10 ((𝜑𝐼 ≤ (𝑋𝐼)) → ¬ (𝑋𝐼) < 𝐼)
36353adant2 1128 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → ¬ (𝑋𝐼) < 𝐼)
37 breq1 5144 . . . . . . . . . 10 (𝑦 = (𝑋𝐼) → (𝑦 < 𝐼 ↔ (𝑋𝐼) < 𝐼))
38373ad2ant2 1131 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → (𝑦 < 𝐼 ↔ (𝑋𝐼) < 𝐼))
3936, 38mtbird 325 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → ¬ 𝑦 < 𝐼)
4039iffalsed 4534 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = (𝑦 + 1))
41 simp2 1134 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 𝑦 = (𝑋𝐼))
4241oveq1d 7420 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → (𝑦 + 1) = ((𝑋𝐼) + 1))
43 simp3 1135 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 𝐼 ≤ (𝑋𝐼))
4443iftrued 4531 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 1)
4544eqcomd 2732 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 1 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
46 metakunt30.10 . . . . . . . . . . . 12 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)
4746a1i 11 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
4847eqcomd 2732 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 𝐻)
4945, 48eqtrd 2766 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → 1 = 𝐻)
5049oveq2d 7421 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) + 1) = ((𝑋𝐼) + 𝐻))
5142, 50eqtrd 2766 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → (𝑦 + 1) = ((𝑋𝐼) + 𝐻))
5240, 51eqtrd 2766 . . . . . 6 ((𝜑𝑦 = (𝑋𝐼) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
53523expa 1115 . . . . 5 (((𝜑𝑦 = (𝑋𝐼)) ∧ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
54 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ¬ 𝐼 ≤ (𝑋𝐼))
5518adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) ∈ ℝ)
5617adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐼 ∈ ℝ)
5755, 56ltnled 11365 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) < 𝐼 ↔ ¬ 𝐼 ≤ (𝑋𝐼)))
5854, 57mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) < 𝐼)
59583adant2 1128 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) < 𝐼)
60373ad2ant2 1131 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑦 < 𝐼 ↔ (𝑋𝐼) < 𝐼))
6159, 60mpbird 257 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑦 < 𝐼)
6261iftrued 4531 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = 𝑦)
63 simp2 1134 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑦 = (𝑋𝐼))
64 nncn 12224 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → 𝑋 ∈ ℂ)
6514, 64syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
66653ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑋 ∈ ℂ)
672nncnd 12232 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
68673ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐼 ∈ ℂ)
6966, 68subcld 11575 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) ∈ ℂ)
7069addridd 11418 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) + 0) = (𝑋𝐼))
7170eqcomd 2732 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) = ((𝑋𝐼) + 0))
7246a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
73 simp3 1135 . . . . . . . . . . . . 13 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ¬ 𝐼 ≤ (𝑋𝐼))
7473iffalsed 4534 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝐼 ≤ (𝑋𝐼), 1, 0) = 0)
7572, 74eqtrd 2766 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝐻 = 0)
7675eqcomd 2732 . . . . . . . . . 10 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 0 = 𝐻)
7776oveq2d 7421 . . . . . . . . 9 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → ((𝑋𝐼) + 0) = ((𝑋𝐼) + 𝐻))
7871, 77eqtrd 2766 . . . . . . . 8 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → (𝑋𝐼) = ((𝑋𝐼) + 𝐻))
7963, 78eqtrd 2766 . . . . . . 7 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → 𝑦 = ((𝑋𝐼) + 𝐻))
8062, 79eqtrd 2766 . . . . . 6 ((𝜑𝑦 = (𝑋𝐼) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
81803expa 1115 . . . . 5 (((𝜑𝑦 = (𝑋𝐼)) ∧ ¬ 𝐼 ≤ (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
8253, 81pm2.61dan 810 . . . 4 ((𝜑𝑦 = (𝑋𝐼)) → if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)) = ((𝑋𝐼) + 𝐻))
8333, 82eqtrd 2766 . . 3 ((𝜑𝑦 = (𝑋𝐼)) → if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))) = ((𝑋𝐼) + 𝐻))
84 1zzd 12597 . . . 4 (𝜑 → 1 ∈ ℤ)
851nnzd 12589 . . . 4 (𝜑𝑀 ∈ ℤ)
8614nnzd 12589 . . . . 5 (𝜑𝑋 ∈ ℤ)
872nnzd 12589 . . . . 5 (𝜑𝐼 ∈ ℤ)
8886, 87zsubcld 12675 . . . 4 (𝜑 → (𝑋𝐼) ∈ ℤ)
89 1m1e0 12288 . . . . . 6 (1 − 1) = 0
9017, 16, 8nltled 11368 . . . . . . . . 9 (𝜑𝐼𝑋)
917neqned 2941 . . . . . . . . 9 (𝜑𝑋𝐼)
9290, 91jca 511 . . . . . . . 8 (𝜑 → (𝐼𝑋𝑋𝐼))
9317, 16ltlend 11363 . . . . . . . 8 (𝜑 → (𝐼 < 𝑋 ↔ (𝐼𝑋𝑋𝐼)))
9492, 93mpbird 257 . . . . . . 7 (𝜑𝐼 < 𝑋)
9517, 16posdifd 11805 . . . . . . 7 (𝜑 → (𝐼 < 𝑋 ↔ 0 < (𝑋𝐼)))
9694, 95mpbid 231 . . . . . 6 (𝜑 → 0 < (𝑋𝐼))
9789, 96eqbrtrid 5176 . . . . 5 (𝜑 → (1 − 1) < (𝑋𝐼))
98 zlem1lt 12618 . . . . . 6 ((1 ∈ ℤ ∧ (𝑋𝐼) ∈ ℤ) → (1 ≤ (𝑋𝐼) ↔ (1 − 1) < (𝑋𝐼)))
9984, 88, 98syl2anc 583 . . . . 5 (𝜑 → (1 ≤ (𝑋𝐼) ↔ (1 − 1) < (𝑋𝐼)))
10097, 99mpbird 257 . . . 4 (𝜑 → 1 ≤ (𝑋𝐼))
10118, 19, 26ltled 11366 . . . 4 (𝜑 → (𝑋𝐼) ≤ 𝑀)
10284, 85, 88, 100, 101elfzd 13498 . . 3 (𝜑 → (𝑋𝐼) ∈ (1...𝑀))
103 0zd 12574 . . . . . 6 (𝜑 → 0 ∈ ℤ)
10484, 103ifcld 4569 . . . . 5 (𝜑 → if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ)
10546a1i 11 . . . . . 6 (𝜑𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0))
106105eleq1d 2812 . . . . 5 (𝜑 → (𝐻 ∈ ℤ ↔ if(𝐼 ≤ (𝑋𝐼), 1, 0) ∈ ℤ))
107104, 106mpbird 257 . . . 4 (𝜑𝐻 ∈ ℤ)
10888, 107zaddcld 12674 . . 3 (𝜑 → ((𝑋𝐼) + 𝐻) ∈ ℤ)
10912, 83, 102, 108fvmptd 6999 . 2 (𝜑 → (𝐶‘(𝑋𝐼)) = ((𝑋𝐼) + 𝐻))
11010, 109eqtrd 2766 1 (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  ifcif 4523   class class class wbr 5141  cmpt 5224  cfv 6537  (class class class)co 7405  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448  cn 12216  cz 12562  ...cfz 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-fz 13491
This theorem is referenced by:  metakunt31  41581
  Copyright terms: Public domain W3C validator