MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnsymd Structured version   Visualization version   GIF version

Theorem ltnsymd 10817
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
ltled.1 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltnsymd (𝜑 → ¬ 𝐵 < 𝐴)

Proof of Theorem ltnsymd
StepHypRef Expression
1 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ltled.1 . . 3 (𝜑𝐴 < 𝐵)
41, 2, 3ltled 10816 . 2 (𝜑𝐴𝐵)
51, 2lenltd 10814 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
64, 5mpbid 235 1 (𝜑 → ¬ 𝐵 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2112   class class class wbr 5030  cr 10564   < clt 10703  cle 10704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-resscn 10622  ax-pre-lttri 10639
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709
This theorem is referenced by:  fvmptnn04ifd  21543  chfacfscmulgsum  21550  chfacfpmmulgsum  21554  bposlem9  25965  ostth2lem1  26291  tgcgr4  26414  signsvtp  32071  dffltz  39953  rpnnen3lem  40335  limcrecl  42627  icccncfext  42885  fourierdlem10  43115  fourierdlem40  43145  fourierdlem74  43178  fourierdlem75  43179  fourierdlem78  43182  fourierdlem103  43207  sqwvfoura  43226  sqwvfourb  43227  fourierswlem  43228
  Copyright terms: Public domain W3C validator