MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnsymd Structured version   Visualization version   GIF version

Theorem ltnsymd 11367
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
ltled.1 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltnsymd (𝜑 → ¬ 𝐵 < 𝐴)

Proof of Theorem ltnsymd
StepHypRef Expression
1 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ltled.1 . . 3 (𝜑𝐴 < 𝐵)
41, 2, 3ltled 11366 . 2 (𝜑𝐴𝐵)
51, 2lenltd 11364 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
64, 5mpbid 231 1 (𝜑 → ¬ 𝐵 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2104   class class class wbr 5147  cr 11111   < clt 11252  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-resscn 11169  ax-pre-lttri 11186
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258
This theorem is referenced by:  fvmptnn04ifd  22575  chfacfscmulgsum  22582  chfacfpmmulgsum  22586  bposlem9  27031  ostth2lem1  27357  tgcgr4  28049  signsvtp  33892  dffltz  41678  rpnnen3lem  42072  limcrecl  44643  icccncfext  44901  fourierdlem10  45131  fourierdlem40  45161  fourierdlem74  45194  fourierdlem75  45195  fourierdlem78  45198  fourierdlem103  45223  sqwvfoura  45242  sqwvfourb  45243  fourierswlem  45244
  Copyright terms: Public domain W3C validator