Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltnsymd | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltnsymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltled.1 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
4 | 1, 2, 3 | ltled 10816 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
5 | 1, 2 | lenltd 10814 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
6 | 4, 5 | mpbid 235 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2112 class class class wbr 5030 ℝcr 10564 < clt 10703 ≤ cle 10704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-resscn 10622 ax-pre-lttri 10639 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 |
This theorem is referenced by: fvmptnn04ifd 21543 chfacfscmulgsum 21550 chfacfpmmulgsum 21554 bposlem9 25965 ostth2lem1 26291 tgcgr4 26414 signsvtp 32071 dffltz 39953 rpnnen3lem 40335 limcrecl 42627 icccncfext 42885 fourierdlem10 43115 fourierdlem40 43145 fourierdlem74 43178 fourierdlem75 43179 fourierdlem78 43182 fourierdlem103 43207 sqwvfoura 43226 sqwvfourb 43227 fourierswlem 43228 |
Copyright terms: Public domain | W3C validator |