MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnsymd Structured version   Visualization version   GIF version

Theorem ltnsymd 11311
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
ltled.1 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltnsymd (𝜑 → ¬ 𝐵 < 𝐴)

Proof of Theorem ltnsymd
StepHypRef Expression
1 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ltled.1 . . 3 (𝜑𝐴 < 𝐵)
41, 2, 3ltled 11310 . 2 (𝜑𝐴𝐵)
51, 2lenltd 11308 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
64, 5mpbid 231 1 (𝜑 → ¬ 𝐵 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107   class class class wbr 5110  cr 11057   < clt 11196  cle 11197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11115  ax-pre-lttri 11132
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202
This theorem is referenced by:  fvmptnn04ifd  22218  chfacfscmulgsum  22225  chfacfpmmulgsum  22229  bposlem9  26656  ostth2lem1  26982  tgcgr4  27515  signsvtp  33235  dffltz  41001  rpnnen3lem  41384  limcrecl  43944  icccncfext  44202  fourierdlem10  44432  fourierdlem40  44462  fourierdlem74  44495  fourierdlem75  44496  fourierdlem78  44499  fourierdlem103  44524  sqwvfoura  44543  sqwvfourb  44544  fourierswlem  44545
  Copyright terms: Public domain W3C validator