MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnsymd Structured version   Visualization version   GIF version

Theorem ltnsymd 11363
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
ltled.1 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltnsymd (𝜑 → ¬ 𝐵 < 𝐴)

Proof of Theorem ltnsymd
StepHypRef Expression
1 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ltled.1 . . 3 (𝜑𝐴 < 𝐵)
41, 2, 3ltled 11362 . 2 (𝜑𝐴𝐵)
51, 2lenltd 11360 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
64, 5mpbid 231 1 (𝜑 → ¬ 𝐵 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107   class class class wbr 5149  cr 11109   < clt 11248  cle 11249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-pre-lttri 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254
This theorem is referenced by:  fvmptnn04ifd  22355  chfacfscmulgsum  22362  chfacfpmmulgsum  22366  bposlem9  26795  ostth2lem1  27121  tgcgr4  27782  signsvtp  33594  dffltz  41376  rpnnen3lem  41770  limcrecl  44345  icccncfext  44603  fourierdlem10  44833  fourierdlem40  44863  fourierdlem74  44896  fourierdlem75  44897  fourierdlem78  44900  fourierdlem103  44925  sqwvfoura  44944  sqwvfourb  44945  fourierswlem  44946
  Copyright terms: Public domain W3C validator