Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem2 Structured version   Visualization version   GIF version

Theorem dvbdfbdioolem2 45967
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem2.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioolem2.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioolem2.altb (𝜑𝐴 < 𝐵)
dvbdfbdioolem2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioolem2.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioolem2.k (𝜑𝐾 ∈ ℝ)
dvbdfbdioolem2.dvbd (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
dvbdfbdioolem2.m 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴)))
Assertion
Ref Expression
dvbdfbdioolem2 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑀)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem dvbdfbdioolem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvbdfbdioolem2.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
21ffvelcdmda 7012 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
32recnd 11135 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
43abscld 15341 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ∈ ℝ)
5 dvbdfbdioolem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
65rexrd 11157 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
7 dvbdfbdioolem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
87rexrd 11157 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
95, 7readdcld 11136 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
109rehalfcld 12363 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
11 dvbdfbdioolem2.altb . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
12 avglt1 12354 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
135, 7, 12syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
1411, 13mpbid 232 . . . . . . . . . 10 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
15 avglt2 12355 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
165, 7, 15syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
1711, 16mpbid 232 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
186, 8, 10, 14, 17eliood 45538 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
191, 18ffvelcdmd 7013 . . . . . . . 8 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
2019recnd 11135 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
2120abscld 15341 . . . . . 6 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
2221adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
234, 22resubcld 11540 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ∈ ℝ)
24 dvbdfbdioolem2.k . . . . . 6 (𝜑𝐾 ∈ ℝ)
2524adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐾 ∈ ℝ)
267adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
275adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
2826, 27resubcld 11540 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ∈ ℝ)
2925, 28remulcld 11137 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐾 · (𝐵𝐴)) ∈ ℝ)
3020adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
313, 30subcld 11467 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
3231abscld 15341 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ∈ ℝ)
333, 30abs2difd 15362 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))))
34 simpll 766 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝜑)
3510rexrd 11157 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ*)
3635ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ*)
378ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝐵 ∈ ℝ*)
38 elioore 13270 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
3938adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
4039adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ ℝ)
41 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) < 𝑥)
426adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
438adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
44 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
45 iooltub 45550 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
4642, 43, 44, 45syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
4746adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 < 𝐵)
4836, 37, 40, 41, 47eliood 45538 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵))
495adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐴 ∈ ℝ)
507adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐵 ∈ ℝ)
511adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
52 dvbdfbdioolem2.dmdv . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
5352adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
5424adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐾 ∈ ℝ)
55 dvbdfbdioolem2.dvbd . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
56 2fveq3 6822 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦)))
5756breq1d 5096 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾))
5857cbvralvw 3210 . . . . . . . . . . 11 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
5955, 58sylib 218 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6059adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6118adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
62 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵))
6349, 50, 51, 53, 54, 60, 61, 62dvbdfbdioolem1 45966 . . . . . . . 8 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ((abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝑥 − ((𝐴 + 𝐵) / 2))) ∧ (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴))))
6463simprd 495 . . . . . . 7 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
6534, 48, 64syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
66 fveq2 6817 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) / 2) = 𝑥 → (𝐹‘((𝐴 + 𝐵) / 2)) = (𝐹𝑥))
6766eqcomd 2737 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) / 2) = 𝑥 → (𝐹𝑥) = (𝐹‘((𝐴 + 𝐵) / 2)))
6867adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹𝑥) = (𝐹‘((𝐴 + 𝐵) / 2)))
6920adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
7068, 69eqeltrd 2831 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹𝑥) ∈ ℂ)
7170, 68subeq0bd 11538 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2))) = 0)
7271abs00bd 15193 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = 0)
7324adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐾 ∈ ℝ)
747adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐵 ∈ ℝ)
755adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐴 ∈ ℝ)
7674, 75resubcld 11540 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐵𝐴) ∈ ℝ)
77 0red 11110 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
78 ioossre 13302 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐵) ⊆ ℝ
79 dvfre 25877 . . . . . . . . . . . . . . . 16 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
801, 78, 79sylancl 586 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8118, 52eleqtrrd 2834 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ dom (ℝ D 𝐹))
8280, 81ffvelcdmd 7013 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
8382recnd 11135 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
8483abscld 15341 . . . . . . . . . . . 12 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
8583absge0d 15349 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
86 2fveq3 6822 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
8786breq1d 5096 . . . . . . . . . . . . . 14 (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾))
8887rspccva 3571 . . . . . . . . . . . . 13 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ∧ ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾)
8955, 18, 88syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾)
9077, 84, 24, 85, 89letrd 11265 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐾)
9190adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ 𝐾)
927, 5resubcld 11540 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐴) ∈ ℝ)
935, 7posdifd 11699 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
9411, 93mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 < (𝐵𝐴))
9577, 92, 94ltled 11256 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝐵𝐴))
9695adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ (𝐵𝐴))
9773, 76, 91, 96mulge0d 11689 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ (𝐾 · (𝐵𝐴)))
9872, 97eqbrtrd 5108 . . . . . . . 8 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
9998ad4ant14 752 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
100 simpll 766 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝜑𝑥 ∈ (𝐴(,)𝐵)))
10139ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 ∈ ℝ)
10210ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
10339adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ ℝ)
10410ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
105 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → ¬ ((𝐴 + 𝐵) / 2) < 𝑥)
106103, 104, 105nltled 11258 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ≤ ((𝐴 + 𝐵) / 2))
107106adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 ≤ ((𝐴 + 𝐵) / 2))
108 neqne 2936 . . . . . . . . . 10 (¬ ((𝐴 + 𝐵) / 2) = 𝑥 → ((𝐴 + 𝐵) / 2) ≠ 𝑥)
109108adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐴 + 𝐵) / 2) ≠ 𝑥)
110101, 102, 107, 109leneltd 11262 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 < ((𝐴 + 𝐵) / 2))
1113, 30abssubd 15358 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))))
112111adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))))
1135ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐴 ∈ ℝ)
1147ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐵 ∈ ℝ)
1151ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
11652ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
11724ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐾 ∈ ℝ)
11859ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
11944adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 ∈ (𝐴(,)𝐵))
12038rexrd 11157 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*)
121120ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 ∈ ℝ*)
1228ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐵 ∈ ℝ*)
12310ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
124 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 < ((𝐴 + 𝐵) / 2))
12517ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) < 𝐵)
126121, 122, 123, 124, 125eliood 45538 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) ∈ (𝑥(,)𝐵))
127113, 114, 115, 116, 117, 118, 119, 126dvbdfbdioolem1 45966 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (((𝐴 + 𝐵) / 2) − 𝑥)) ∧ (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (𝐵𝐴))))
128127simprd 495 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (𝐵𝐴)))
129112, 128eqbrtrd 5108 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
130100, 110, 129syl2anc 584 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13199, 130pm2.61dan 812 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13265, 131pm2.61dan 812 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13323, 32, 29, 33, 132letrd 11265 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13423, 29, 22, 133leadd1dd 11726 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
1354recnd 11135 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ∈ ℂ)
13622recnd 11135 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
137135, 136npcand 11471 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘(𝐹𝑥)))
138137eqcomd 2737 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) = (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
139 dvbdfbdioolem2.m . . . . 5 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴)))
14021recnd 11135 . . . . . 6 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
14124recnd 11135 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
1427recnd 11135 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1435recnd 11135 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
144142, 143subcld 11467 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
145141, 144mulcld 11127 . . . . . 6 (𝜑 → (𝐾 · (𝐵𝐴)) ∈ ℂ)
146140, 145addcomd 11310 . . . . 5 (𝜑 → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴))) = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
147139, 146eqtrid 2778 . . . 4 (𝜑𝑀 = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
148147adantr 480 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑀 = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
149134, 138, 1483brtr4d 5118 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ≤ 𝑀)
150149ralrimiva 3124 1 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3897   class class class wbr 5086  dom cdm 5611  wf 6472  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001   + caddc 11004   · cmul 11006  *cxr 11140   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  2c2 12175  (,)cioo 13240  abscabs 15136   D cdv 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790
This theorem is referenced by:  dvbdfbdioo  45968
  Copyright terms: Public domain W3C validator