Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem2 Structured version   Visualization version   GIF version

Theorem dvbdfbdioolem2 45910
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem2.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioolem2.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioolem2.altb (𝜑𝐴 < 𝐵)
dvbdfbdioolem2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioolem2.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioolem2.k (𝜑𝐾 ∈ ℝ)
dvbdfbdioolem2.dvbd (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
dvbdfbdioolem2.m 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴)))
Assertion
Ref Expression
dvbdfbdioolem2 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑀)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem dvbdfbdioolem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvbdfbdioolem2.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
21ffvelcdmda 7018 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
32recnd 11143 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
43abscld 15346 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ∈ ℝ)
5 dvbdfbdioolem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
65rexrd 11165 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
7 dvbdfbdioolem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
87rexrd 11165 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
95, 7readdcld 11144 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
109rehalfcld 12371 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
11 dvbdfbdioolem2.altb . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
12 avglt1 12362 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
135, 7, 12syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
1411, 13mpbid 232 . . . . . . . . . 10 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
15 avglt2 12363 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
165, 7, 15syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
1711, 16mpbid 232 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
186, 8, 10, 14, 17eliood 45479 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
191, 18ffvelcdmd 7019 . . . . . . . 8 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
2019recnd 11143 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
2120abscld 15346 . . . . . 6 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
2221adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
234, 22resubcld 11548 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ∈ ℝ)
24 dvbdfbdioolem2.k . . . . . 6 (𝜑𝐾 ∈ ℝ)
2524adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐾 ∈ ℝ)
267adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
275adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
2826, 27resubcld 11548 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ∈ ℝ)
2925, 28remulcld 11145 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐾 · (𝐵𝐴)) ∈ ℝ)
3020adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
313, 30subcld 11475 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
3231abscld 15346 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ∈ ℝ)
333, 30abs2difd 15367 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))))
34 simpll 766 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝜑)
3510rexrd 11165 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ*)
3635ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ*)
378ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝐵 ∈ ℝ*)
38 elioore 13278 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
3938adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
4039adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ ℝ)
41 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) < 𝑥)
426adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
438adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
44 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
45 iooltub 45491 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
4642, 43, 44, 45syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
4746adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 < 𝐵)
4836, 37, 40, 41, 47eliood 45479 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵))
495adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐴 ∈ ℝ)
507adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐵 ∈ ℝ)
511adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
52 dvbdfbdioolem2.dmdv . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
5352adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
5424adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐾 ∈ ℝ)
55 dvbdfbdioolem2.dvbd . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
56 2fveq3 6827 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦)))
5756breq1d 5102 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾))
5857cbvralvw 3207 . . . . . . . . . . 11 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
5955, 58sylib 218 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6059adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6118adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
62 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵))
6349, 50, 51, 53, 54, 60, 61, 62dvbdfbdioolem1 45909 . . . . . . . 8 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ((abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝑥 − ((𝐴 + 𝐵) / 2))) ∧ (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴))))
6463simprd 495 . . . . . . 7 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
6534, 48, 64syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
66 fveq2 6822 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) / 2) = 𝑥 → (𝐹‘((𝐴 + 𝐵) / 2)) = (𝐹𝑥))
6766eqcomd 2735 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) / 2) = 𝑥 → (𝐹𝑥) = (𝐹‘((𝐴 + 𝐵) / 2)))
6867adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹𝑥) = (𝐹‘((𝐴 + 𝐵) / 2)))
6920adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
7068, 69eqeltrd 2828 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹𝑥) ∈ ℂ)
7170, 68subeq0bd 11546 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2))) = 0)
7271abs00bd 15198 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = 0)
7324adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐾 ∈ ℝ)
747adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐵 ∈ ℝ)
755adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐴 ∈ ℝ)
7674, 75resubcld 11548 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐵𝐴) ∈ ℝ)
77 0red 11118 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
78 ioossre 13310 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐵) ⊆ ℝ
79 dvfre 25853 . . . . . . . . . . . . . . . 16 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
801, 78, 79sylancl 586 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8118, 52eleqtrrd 2831 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ dom (ℝ D 𝐹))
8280, 81ffvelcdmd 7019 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
8382recnd 11143 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
8483abscld 15346 . . . . . . . . . . . 12 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
8583absge0d 15354 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
86 2fveq3 6827 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
8786breq1d 5102 . . . . . . . . . . . . . 14 (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾))
8887rspccva 3576 . . . . . . . . . . . . 13 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ∧ ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾)
8955, 18, 88syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾)
9077, 84, 24, 85, 89letrd 11273 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐾)
9190adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ 𝐾)
927, 5resubcld 11548 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐴) ∈ ℝ)
935, 7posdifd 11707 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
9411, 93mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 < (𝐵𝐴))
9577, 92, 94ltled 11264 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝐵𝐴))
9695adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ (𝐵𝐴))
9773, 76, 91, 96mulge0d 11697 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ (𝐾 · (𝐵𝐴)))
9872, 97eqbrtrd 5114 . . . . . . . 8 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
9998ad4ant14 752 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
100 simpll 766 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝜑𝑥 ∈ (𝐴(,)𝐵)))
10139ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 ∈ ℝ)
10210ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
10339adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ ℝ)
10410ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
105 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → ¬ ((𝐴 + 𝐵) / 2) < 𝑥)
106103, 104, 105nltled 11266 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ≤ ((𝐴 + 𝐵) / 2))
107106adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 ≤ ((𝐴 + 𝐵) / 2))
108 neqne 2933 . . . . . . . . . 10 (¬ ((𝐴 + 𝐵) / 2) = 𝑥 → ((𝐴 + 𝐵) / 2) ≠ 𝑥)
109108adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐴 + 𝐵) / 2) ≠ 𝑥)
110101, 102, 107, 109leneltd 11270 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 < ((𝐴 + 𝐵) / 2))
1113, 30abssubd 15363 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))))
112111adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))))
1135ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐴 ∈ ℝ)
1147ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐵 ∈ ℝ)
1151ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
11652ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
11724ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐾 ∈ ℝ)
11859ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
11944adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 ∈ (𝐴(,)𝐵))
12038rexrd 11165 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*)
121120ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 ∈ ℝ*)
1228ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐵 ∈ ℝ*)
12310ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
124 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 < ((𝐴 + 𝐵) / 2))
12517ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) < 𝐵)
126121, 122, 123, 124, 125eliood 45479 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) ∈ (𝑥(,)𝐵))
127113, 114, 115, 116, 117, 118, 119, 126dvbdfbdioolem1 45909 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (((𝐴 + 𝐵) / 2) − 𝑥)) ∧ (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (𝐵𝐴))))
128127simprd 495 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (𝐵𝐴)))
129112, 128eqbrtrd 5114 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
130100, 110, 129syl2anc 584 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13199, 130pm2.61dan 812 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13265, 131pm2.61dan 812 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13323, 32, 29, 33, 132letrd 11273 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13423, 29, 22, 133leadd1dd 11734 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
1354recnd 11143 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ∈ ℂ)
13622recnd 11143 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
137135, 136npcand 11479 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘(𝐹𝑥)))
138137eqcomd 2735 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) = (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
139 dvbdfbdioolem2.m . . . . 5 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴)))
14021recnd 11143 . . . . . 6 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
14124recnd 11143 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
1427recnd 11143 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1435recnd 11143 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
144142, 143subcld 11475 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
145141, 144mulcld 11135 . . . . . 6 (𝜑 → (𝐾 · (𝐵𝐴)) ∈ ℂ)
146140, 145addcomd 11318 . . . . 5 (𝜑 → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴))) = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
147139, 146eqtrid 2776 . . . 4 (𝜑𝑀 = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
148147adantr 480 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑀 = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
149134, 138, 1483brtr4d 5124 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ≤ 𝑀)
150149ralrimiva 3121 1 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3903   class class class wbr 5092  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  2c2 12183  (,)cioo 13248  abscabs 15141   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  dvbdfbdioo  45911
  Copyright terms: Public domain W3C validator