Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem2 Structured version   Visualization version   GIF version

Theorem dvbdfbdioolem2 45885
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem2.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioolem2.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioolem2.altb (𝜑𝐴 < 𝐵)
dvbdfbdioolem2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioolem2.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioolem2.k (𝜑𝐾 ∈ ℝ)
dvbdfbdioolem2.dvbd (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
dvbdfbdioolem2.m 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴)))
Assertion
Ref Expression
dvbdfbdioolem2 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑀)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem dvbdfbdioolem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvbdfbdioolem2.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
21ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
32recnd 11287 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
43abscld 15472 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ∈ ℝ)
5 dvbdfbdioolem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
65rexrd 11309 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
7 dvbdfbdioolem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
87rexrd 11309 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
95, 7readdcld 11288 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
109rehalfcld 12511 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
11 dvbdfbdioolem2.altb . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
12 avglt1 12502 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
135, 7, 12syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
1411, 13mpbid 232 . . . . . . . . . 10 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
15 avglt2 12503 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
165, 7, 15syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
1711, 16mpbid 232 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
186, 8, 10, 14, 17eliood 45451 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
191, 18ffvelcdmd 7105 . . . . . . . 8 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
2019recnd 11287 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
2120abscld 15472 . . . . . 6 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
2221adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
234, 22resubcld 11689 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ∈ ℝ)
24 dvbdfbdioolem2.k . . . . . 6 (𝜑𝐾 ∈ ℝ)
2524adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐾 ∈ ℝ)
267adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
275adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
2826, 27resubcld 11689 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ∈ ℝ)
2925, 28remulcld 11289 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐾 · (𝐵𝐴)) ∈ ℝ)
3020adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
313, 30subcld 11618 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
3231abscld 15472 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ∈ ℝ)
333, 30abs2difd 15493 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))))
34 simpll 767 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝜑)
3510rexrd 11309 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ*)
3635ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ*)
378ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝐵 ∈ ℝ*)
38 elioore 13414 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
3938adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
4039adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ ℝ)
41 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) < 𝑥)
426adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
438adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
44 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
45 iooltub 45463 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
4642, 43, 44, 45syl3anc 1370 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
4746adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 < 𝐵)
4836, 37, 40, 41, 47eliood 45451 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵))
495adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐴 ∈ ℝ)
507adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐵 ∈ ℝ)
511adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
52 dvbdfbdioolem2.dmdv . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
5352adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
5424adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐾 ∈ ℝ)
55 dvbdfbdioolem2.dvbd . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
56 2fveq3 6912 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦)))
5756breq1d 5158 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾))
5857cbvralvw 3235 . . . . . . . . . . 11 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
5955, 58sylib 218 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6059adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6118adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
62 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵))
6349, 50, 51, 53, 54, 60, 61, 62dvbdfbdioolem1 45884 . . . . . . . 8 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ((abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝑥 − ((𝐴 + 𝐵) / 2))) ∧ (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴))))
6463simprd 495 . . . . . . 7 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
6534, 48, 64syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
66 fveq2 6907 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) / 2) = 𝑥 → (𝐹‘((𝐴 + 𝐵) / 2)) = (𝐹𝑥))
6766eqcomd 2741 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) / 2) = 𝑥 → (𝐹𝑥) = (𝐹‘((𝐴 + 𝐵) / 2)))
6867adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹𝑥) = (𝐹‘((𝐴 + 𝐵) / 2)))
6920adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
7068, 69eqeltrd 2839 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹𝑥) ∈ ℂ)
7170, 68subeq0bd 11687 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2))) = 0)
7271abs00bd 15327 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = 0)
7324adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐾 ∈ ℝ)
747adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐵 ∈ ℝ)
755adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐴 ∈ ℝ)
7674, 75resubcld 11689 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐵𝐴) ∈ ℝ)
77 0red 11262 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
78 ioossre 13445 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐵) ⊆ ℝ
79 dvfre 26004 . . . . . . . . . . . . . . . 16 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
801, 78, 79sylancl 586 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8118, 52eleqtrrd 2842 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ dom (ℝ D 𝐹))
8280, 81ffvelcdmd 7105 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
8382recnd 11287 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
8483abscld 15472 . . . . . . . . . . . 12 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
8583absge0d 15480 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
86 2fveq3 6912 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
8786breq1d 5158 . . . . . . . . . . . . . 14 (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾))
8887rspccva 3621 . . . . . . . . . . . . 13 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ∧ ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾)
8955, 18, 88syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾)
9077, 84, 24, 85, 89letrd 11416 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐾)
9190adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ 𝐾)
927, 5resubcld 11689 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐴) ∈ ℝ)
935, 7posdifd 11848 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
9411, 93mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 < (𝐵𝐴))
9577, 92, 94ltled 11407 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝐵𝐴))
9695adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ (𝐵𝐴))
9773, 76, 91, 96mulge0d 11838 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ (𝐾 · (𝐵𝐴)))
9872, 97eqbrtrd 5170 . . . . . . . 8 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
9998ad4ant14 752 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
100 simpll 767 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝜑𝑥 ∈ (𝐴(,)𝐵)))
10139ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 ∈ ℝ)
10210ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
10339adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ ℝ)
10410ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
105 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → ¬ ((𝐴 + 𝐵) / 2) < 𝑥)
106103, 104, 105nltled 11409 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ≤ ((𝐴 + 𝐵) / 2))
107106adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 ≤ ((𝐴 + 𝐵) / 2))
108 neqne 2946 . . . . . . . . . 10 (¬ ((𝐴 + 𝐵) / 2) = 𝑥 → ((𝐴 + 𝐵) / 2) ≠ 𝑥)
109108adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐴 + 𝐵) / 2) ≠ 𝑥)
110101, 102, 107, 109leneltd 11413 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 < ((𝐴 + 𝐵) / 2))
1113, 30abssubd 15489 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))))
112111adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))))
1135ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐴 ∈ ℝ)
1147ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐵 ∈ ℝ)
1151ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
11652ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
11724ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐾 ∈ ℝ)
11859ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
11944adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 ∈ (𝐴(,)𝐵))
12038rexrd 11309 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*)
121120ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 ∈ ℝ*)
1228ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐵 ∈ ℝ*)
12310ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
124 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 < ((𝐴 + 𝐵) / 2))
12517ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) < 𝐵)
126121, 122, 123, 124, 125eliood 45451 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) ∈ (𝑥(,)𝐵))
127113, 114, 115, 116, 117, 118, 119, 126dvbdfbdioolem1 45884 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (((𝐴 + 𝐵) / 2) − 𝑥)) ∧ (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (𝐵𝐴))))
128127simprd 495 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (𝐵𝐴)))
129112, 128eqbrtrd 5170 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
130100, 110, 129syl2anc 584 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13199, 130pm2.61dan 813 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13265, 131pm2.61dan 813 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13323, 32, 29, 33, 132letrd 11416 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13423, 29, 22, 133leadd1dd 11875 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
1354recnd 11287 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ∈ ℂ)
13622recnd 11287 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
137135, 136npcand 11622 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘(𝐹𝑥)))
138137eqcomd 2741 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) = (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
139 dvbdfbdioolem2.m . . . . 5 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴)))
14021recnd 11287 . . . . . 6 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
14124recnd 11287 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
1427recnd 11287 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1435recnd 11287 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
144142, 143subcld 11618 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
145141, 144mulcld 11279 . . . . . 6 (𝜑 → (𝐾 · (𝐵𝐴)) ∈ ℂ)
146140, 145addcomd 11461 . . . . 5 (𝜑 → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴))) = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
147139, 146eqtrid 2787 . . . 4 (𝜑𝑀 = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
148147adantr 480 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑀 = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
149134, 138, 1483brtr4d 5180 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ≤ 𝑀)
150149ralrimiva 3144 1 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wss 3963   class class class wbr 5148  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   + caddc 11156   · cmul 11158  *cxr 11292   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  (,)cioo 13384  abscabs 15270   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  dvbdfbdioo  45886
  Copyright terms: Public domain W3C validator