Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem2 Structured version   Visualization version   GIF version

Theorem dvbdfbdioolem2 42221
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem2.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioolem2.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioolem2.altb (𝜑𝐴 < 𝐵)
dvbdfbdioolem2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioolem2.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioolem2.k (𝜑𝐾 ∈ ℝ)
dvbdfbdioolem2.dvbd (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
dvbdfbdioolem2.m 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴)))
Assertion
Ref Expression
dvbdfbdioolem2 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑀)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem dvbdfbdioolem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvbdfbdioolem2.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
21ffvelrnda 6853 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
32recnd 10671 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
43abscld 14798 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ∈ ℝ)
5 dvbdfbdioolem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
65rexrd 10693 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
7 dvbdfbdioolem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
87rexrd 10693 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
95, 7readdcld 10672 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
109rehalfcld 11887 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
11 dvbdfbdioolem2.altb . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
12 avglt1 11878 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
135, 7, 12syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
1411, 13mpbid 234 . . . . . . . . . 10 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
15 avglt2 11879 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
165, 7, 15syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
1711, 16mpbid 234 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
186, 8, 10, 14, 17eliood 41780 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
191, 18ffvelrnd 6854 . . . . . . . 8 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
2019recnd 10671 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
2120abscld 14798 . . . . . 6 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
2221adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
234, 22resubcld 11070 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ∈ ℝ)
24 dvbdfbdioolem2.k . . . . . 6 (𝜑𝐾 ∈ ℝ)
2524adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐾 ∈ ℝ)
267adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
275adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
2826, 27resubcld 11070 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ∈ ℝ)
2925, 28remulcld 10673 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐾 · (𝐵𝐴)) ∈ ℝ)
3020adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
313, 30subcld 10999 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
3231abscld 14798 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ∈ ℝ)
333, 30abs2difd 14819 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))))
34 simpll 765 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝜑)
3510rexrd 10693 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ*)
3635ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ*)
378ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝐵 ∈ ℝ*)
38 elioore 12771 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
3938adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
4039adantr 483 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ ℝ)
41 simpr 487 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) < 𝑥)
426adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
438adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
44 simpr 487 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
45 iooltub 41793 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
4642, 43, 44, 45syl3anc 1367 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
4746adantr 483 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 < 𝐵)
4836, 37, 40, 41, 47eliood 41780 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵))
495adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐴 ∈ ℝ)
507adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐵 ∈ ℝ)
511adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
52 dvbdfbdioolem2.dmdv . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
5352adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
5424adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐾 ∈ ℝ)
55 dvbdfbdioolem2.dvbd . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
56 2fveq3 6677 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦)))
5756breq1d 5078 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾))
5857cbvralvw 3451 . . . . . . . . . . 11 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
5955, 58sylib 220 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6059adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6118adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
62 simpr 487 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵))
6349, 50, 51, 53, 54, 60, 61, 62dvbdfbdioolem1 42220 . . . . . . . 8 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ((abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝑥 − ((𝐴 + 𝐵) / 2))) ∧ (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴))))
6463simprd 498 . . . . . . 7 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
6534, 48, 64syl2anc 586 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
66 fveq2 6672 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) / 2) = 𝑥 → (𝐹‘((𝐴 + 𝐵) / 2)) = (𝐹𝑥))
6766eqcomd 2829 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) / 2) = 𝑥 → (𝐹𝑥) = (𝐹‘((𝐴 + 𝐵) / 2)))
6867adantl 484 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹𝑥) = (𝐹‘((𝐴 + 𝐵) / 2)))
6920adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
7068, 69eqeltrd 2915 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹𝑥) ∈ ℂ)
7170, 68subeq0bd 11068 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2))) = 0)
7271abs00bd 14653 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = 0)
7324adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐾 ∈ ℝ)
747adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐵 ∈ ℝ)
755adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐴 ∈ ℝ)
7674, 75resubcld 11070 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐵𝐴) ∈ ℝ)
77 0red 10646 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
78 ioossre 12801 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐵) ⊆ ℝ
79 dvfre 24550 . . . . . . . . . . . . . . . 16 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
801, 78, 79sylancl 588 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8118, 52eleqtrrd 2918 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ dom (ℝ D 𝐹))
8280, 81ffvelrnd 6854 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
8382recnd 10671 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
8483abscld 14798 . . . . . . . . . . . 12 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
8583absge0d 14806 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
86 2fveq3 6677 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
8786breq1d 5078 . . . . . . . . . . . . . 14 (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾))
8887rspccva 3624 . . . . . . . . . . . . 13 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ∧ ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾)
8955, 18, 88syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾)
9077, 84, 24, 85, 89letrd 10799 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐾)
9190adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ 𝐾)
927, 5resubcld 11070 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐴) ∈ ℝ)
935, 7posdifd 11229 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
9411, 93mpbid 234 . . . . . . . . . . . 12 (𝜑 → 0 < (𝐵𝐴))
9577, 92, 94ltled 10790 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝐵𝐴))
9695adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ (𝐵𝐴))
9773, 76, 91, 96mulge0d 11219 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ (𝐾 · (𝐵𝐴)))
9872, 97eqbrtrd 5090 . . . . . . . 8 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
9998ad4ant14 750 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
100 simpll 765 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝜑𝑥 ∈ (𝐴(,)𝐵)))
10139ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 ∈ ℝ)
10210ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
10339adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ ℝ)
10410ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
105 simpr 487 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → ¬ ((𝐴 + 𝐵) / 2) < 𝑥)
106103, 104, 105nltled 10792 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ≤ ((𝐴 + 𝐵) / 2))
107106adantr 483 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 ≤ ((𝐴 + 𝐵) / 2))
108 neqne 3026 . . . . . . . . . 10 (¬ ((𝐴 + 𝐵) / 2) = 𝑥 → ((𝐴 + 𝐵) / 2) ≠ 𝑥)
109108adantl 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐴 + 𝐵) / 2) ≠ 𝑥)
110101, 102, 107, 109leneltd 10796 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 < ((𝐴 + 𝐵) / 2))
1113, 30abssubd 14815 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))))
112111adantr 483 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))))
1135ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐴 ∈ ℝ)
1147ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐵 ∈ ℝ)
1151ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
11652ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
11724ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐾 ∈ ℝ)
11859ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
11944adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 ∈ (𝐴(,)𝐵))
12038rexrd 10693 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*)
121120ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 ∈ ℝ*)
1228ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐵 ∈ ℝ*)
12310ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
124 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 < ((𝐴 + 𝐵) / 2))
12517ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) < 𝐵)
126121, 122, 123, 124, 125eliood 41780 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) ∈ (𝑥(,)𝐵))
127113, 114, 115, 116, 117, 118, 119, 126dvbdfbdioolem1 42220 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (((𝐴 + 𝐵) / 2) − 𝑥)) ∧ (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (𝐵𝐴))))
128127simprd 498 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (𝐵𝐴)))
129112, 128eqbrtrd 5090 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
130100, 110, 129syl2anc 586 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13199, 130pm2.61dan 811 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13265, 131pm2.61dan 811 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13323, 32, 29, 33, 132letrd 10799 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13423, 29, 22, 133leadd1dd 11256 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
1354recnd 10671 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ∈ ℂ)
13622recnd 10671 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
137135, 136npcand 11003 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘(𝐹𝑥)))
138137eqcomd 2829 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) = (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
139 dvbdfbdioolem2.m . . . . 5 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴)))
14021recnd 10671 . . . . . 6 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
14124recnd 10671 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
1427recnd 10671 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1435recnd 10671 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
144142, 143subcld 10999 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
145141, 144mulcld 10663 . . . . . 6 (𝜑 → (𝐾 · (𝐵𝐴)) ∈ ℂ)
146140, 145addcomd 10844 . . . . 5 (𝜑 → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴))) = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
147139, 146syl5eq 2870 . . . 4 (𝜑𝑀 = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
148147adantr 483 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑀 = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
149134, 138, 1483brtr4d 5100 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ≤ 𝑀)
150149ralrimiva 3184 1 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wss 3938   class class class wbr 5068  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  (,)cioo 12741  abscabs 14595   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  dvbdfbdioo  42222
  Copyright terms: Public domain W3C validator