Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressnm Structured version   Visualization version   GIF version

Theorem ressnm 30664
Description: The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
ressnm.1 𝐻 = (𝐺s 𝐴)
ressnm.2 𝐵 = (Base‘𝐺)
ressnm.3 0 = (0g𝐺)
ressnm.4 𝑁 = (norm‘𝐺)
Assertion
Ref Expression
ressnm ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (norm‘𝐻))

Proof of Theorem ressnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ressnm.1 . . . . 5 𝐻 = (𝐺s 𝐴)
2 ressnm.2 . . . . 5 𝐵 = (Base‘𝐺)
31, 2ressbas2 16547 . . . 4 (𝐴𝐵𝐴 = (Base‘𝐻))
433ad2ant3 1132 . . 3 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 = (Base‘𝐻))
52fvexi 6659 . . . . . . 7 𝐵 ∈ V
65ssex 5189 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
7 eqid 2798 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
81, 7ressds 16678 . . . . . 6 (𝐴 ∈ V → (dist‘𝐺) = (dist‘𝐻))
96, 8syl 17 . . . . 5 (𝐴𝐵 → (dist‘𝐺) = (dist‘𝐻))
1093ad2ant3 1132 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (dist‘𝐺) = (dist‘𝐻))
11 eqidd 2799 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑥 = 𝑥)
12 ressnm.3 . . . . 5 0 = (0g𝐺)
131, 2, 12ress0g 17931 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝐻))
1410, 11, 13oveq123d 7156 . . 3 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑥(dist‘𝐺) 0 ) = (𝑥(dist‘𝐻)(0g𝐻)))
154, 14mpteq12dv 5115 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
16 ressnm.4 . . . . . 6 𝑁 = (norm‘𝐺)
1716, 2, 12, 7nmfval 23195 . . . . 5 𝑁 = (𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 ))
1817reseq1i 5814 . . . 4 (𝑁𝐴) = ((𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴)
19 resmpt 5872 . . . 4 (𝐴𝐵 → ((𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
2018, 19syl5eq 2845 . . 3 (𝐴𝐵 → (𝑁𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
21203ad2ant3 1132 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
22 eqid 2798 . . . 4 (norm‘𝐻) = (norm‘𝐻)
23 eqid 2798 . . . 4 (Base‘𝐻) = (Base‘𝐻)
24 eqid 2798 . . . 4 (0g𝐻) = (0g𝐻)
25 eqid 2798 . . . 4 (dist‘𝐻) = (dist‘𝐻)
2622, 23, 24, 25nmfval 23195 . . 3 (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻)))
2726a1i 11 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
2815, 21, 273eqtr4d 2843 1 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (norm‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  cmpt 5110  cres 5521  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  distcds 16566  0gc0g 16705  Mndcmnd 17903  normcnm 23183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-ds 16579  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-nm 23189
This theorem is referenced by:  zringnm  31311  rezh  31322
  Copyright terms: Public domain W3C validator