| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressnm | Structured version Visualization version GIF version | ||
| Description: The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
| Ref | Expression |
|---|---|
| ressnm.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressnm.2 | ⊢ 𝐵 = (Base‘𝐺) |
| ressnm.3 | ⊢ 0 = (0g‘𝐺) |
| ressnm.4 | ⊢ 𝑁 = (norm‘𝐺) |
| Ref | Expression |
|---|---|
| ressnm | ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (norm‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressnm.1 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 2 | ressnm.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 1, 2 | ressbas2 17257 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝐻)) |
| 4 | 3 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘𝐻)) |
| 5 | 2 | fvexi 6889 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 6 | 5 | ssex 5291 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| 7 | eqid 2735 | . . . . . . 7 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 8 | 1, 7 | ressds 17422 | . . . . . 6 ⊢ (𝐴 ∈ V → (dist‘𝐺) = (dist‘𝐻)) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (dist‘𝐺) = (dist‘𝐻)) |
| 10 | 9 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (dist‘𝐺) = (dist‘𝐻)) |
| 11 | eqidd 2736 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝑥 = 𝑥) | |
| 12 | ressnm.3 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 13 | 1, 2, 12 | ress0g 18738 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝐻)) |
| 14 | 10, 11, 13 | oveq123d 7424 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑥(dist‘𝐺) 0 ) = (𝑥(dist‘𝐻)(0g‘𝐻))) |
| 15 | 4, 14 | mpteq12dv 5207 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 )) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻)))) |
| 16 | ressnm.4 | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
| 17 | 16, 2, 12, 7 | nmfval 24525 | . . . . 5 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (𝑥(dist‘𝐺) 0 )) |
| 18 | 17 | reseq1i 5962 | . . . 4 ⊢ (𝑁 ↾ 𝐴) = ((𝑥 ∈ 𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴) |
| 19 | resmpt 6024 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 ))) | |
| 20 | 18, 19 | eqtrid 2782 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑁 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 ))) |
| 21 | 20 | 3ad2ant3 1135 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 ))) |
| 22 | eqid 2735 | . . . 4 ⊢ (norm‘𝐻) = (norm‘𝐻) | |
| 23 | eqid 2735 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 24 | eqid 2735 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 25 | eqid 2735 | . . . 4 ⊢ (dist‘𝐻) = (dist‘𝐻) | |
| 26 | 22, 23, 24, 25 | nmfval 24525 | . . 3 ⊢ (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻))) |
| 27 | 26 | a1i 11 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻)))) |
| 28 | 15, 21, 27 | 3eqtr4d 2780 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (norm‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ↦ cmpt 5201 ↾ cres 5656 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 ↾s cress 17249 distcds 17278 0gc0g 17451 Mndcmnd 18710 normcnm 24513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-ds 17291 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-nm 24519 |
| This theorem is referenced by: zringnm 33935 rezh 33946 |
| Copyright terms: Public domain | W3C validator |