Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressnm Structured version   Visualization version   GIF version

Theorem ressnm 32934
Description: The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
ressnm.1 𝐻 = (𝐺s 𝐴)
ressnm.2 𝐵 = (Base‘𝐺)
ressnm.3 0 = (0g𝐺)
ressnm.4 𝑁 = (norm‘𝐺)
Assertion
Ref Expression
ressnm ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (norm‘𝐻))

Proof of Theorem ressnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ressnm.1 . . . . 5 𝐻 = (𝐺s 𝐴)
2 ressnm.2 . . . . 5 𝐵 = (Base‘𝐺)
31, 2ressbas2 17283 . . . 4 (𝐴𝐵𝐴 = (Base‘𝐻))
433ad2ant3 1134 . . 3 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 = (Base‘𝐻))
52fvexi 6921 . . . . . . 7 𝐵 ∈ V
65ssex 5327 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
7 eqid 2735 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
81, 7ressds 17456 . . . . . 6 (𝐴 ∈ V → (dist‘𝐺) = (dist‘𝐻))
96, 8syl 17 . . . . 5 (𝐴𝐵 → (dist‘𝐺) = (dist‘𝐻))
1093ad2ant3 1134 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (dist‘𝐺) = (dist‘𝐻))
11 eqidd 2736 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑥 = 𝑥)
12 ressnm.3 . . . . 5 0 = (0g𝐺)
131, 2, 12ress0g 18788 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝐻))
1410, 11, 13oveq123d 7452 . . 3 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑥(dist‘𝐺) 0 ) = (𝑥(dist‘𝐻)(0g𝐻)))
154, 14mpteq12dv 5239 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
16 ressnm.4 . . . . . 6 𝑁 = (norm‘𝐺)
1716, 2, 12, 7nmfval 24617 . . . . 5 𝑁 = (𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 ))
1817reseq1i 5996 . . . 4 (𝑁𝐴) = ((𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴)
19 resmpt 6057 . . . 4 (𝐴𝐵 → ((𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
2018, 19eqtrid 2787 . . 3 (𝐴𝐵 → (𝑁𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
21203ad2ant3 1134 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
22 eqid 2735 . . . 4 (norm‘𝐻) = (norm‘𝐻)
23 eqid 2735 . . . 4 (Base‘𝐻) = (Base‘𝐻)
24 eqid 2735 . . . 4 (0g𝐻) = (0g𝐻)
25 eqid 2735 . . . 4 (dist‘𝐻) = (dist‘𝐻)
2622, 23, 24, 25nmfval 24617 . . 3 (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻)))
2726a1i 11 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
2815, 21, 273eqtr4d 2785 1 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (norm‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  cmpt 5231  cres 5691  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  distcds 17307  0gc0g 17486  Mndcmnd 18760  normcnm 24605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-ds 17320  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-nm 24611
This theorem is referenced by:  zringnm  33919  rezh  33932
  Copyright terms: Public domain W3C validator