Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressnm | Structured version Visualization version GIF version |
Description: The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
Ref | Expression |
---|---|
ressnm.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressnm.2 | ⊢ 𝐵 = (Base‘𝐺) |
ressnm.3 | ⊢ 0 = (0g‘𝐺) |
ressnm.4 | ⊢ 𝑁 = (norm‘𝐺) |
Ref | Expression |
---|---|
ressnm | ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (norm‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressnm.1 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
2 | ressnm.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | ressbas2 16875 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝐻)) |
4 | 3 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘𝐻)) |
5 | 2 | fvexi 6770 | . . . . . . 7 ⊢ 𝐵 ∈ V |
6 | 5 | ssex 5240 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
7 | eqid 2738 | . . . . . . 7 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
8 | 1, 7 | ressds 17039 | . . . . . 6 ⊢ (𝐴 ∈ V → (dist‘𝐺) = (dist‘𝐻)) |
9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (dist‘𝐺) = (dist‘𝐻)) |
10 | 9 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (dist‘𝐺) = (dist‘𝐻)) |
11 | eqidd 2739 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝑥 = 𝑥) | |
12 | ressnm.3 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
13 | 1, 2, 12 | ress0g 18328 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝐻)) |
14 | 10, 11, 13 | oveq123d 7276 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑥(dist‘𝐺) 0 ) = (𝑥(dist‘𝐻)(0g‘𝐻))) |
15 | 4, 14 | mpteq12dv 5161 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 )) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻)))) |
16 | ressnm.4 | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
17 | 16, 2, 12, 7 | nmfval 23650 | . . . . 5 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (𝑥(dist‘𝐺) 0 )) |
18 | 17 | reseq1i 5876 | . . . 4 ⊢ (𝑁 ↾ 𝐴) = ((𝑥 ∈ 𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴) |
19 | resmpt 5934 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 ))) | |
20 | 18, 19 | syl5eq 2791 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑁 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 ))) |
21 | 20 | 3ad2ant3 1133 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 ))) |
22 | eqid 2738 | . . . 4 ⊢ (norm‘𝐻) = (norm‘𝐻) | |
23 | eqid 2738 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
24 | eqid 2738 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
25 | eqid 2738 | . . . 4 ⊢ (dist‘𝐻) = (dist‘𝐻) | |
26 | 22, 23, 24, 25 | nmfval 23650 | . . 3 ⊢ (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻))) |
27 | 26 | a1i 11 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻)))) |
28 | 15, 21, 27 | 3eqtr4d 2788 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (norm‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ↦ cmpt 5153 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 distcds 16897 0gc0g 17067 Mndcmnd 18300 normcnm 23638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-ds 16910 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-nm 23644 |
This theorem is referenced by: zringnm 31810 rezh 31821 |
Copyright terms: Public domain | W3C validator |