Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressnm Structured version   Visualization version   GIF version

Theorem ressnm 30633
Description: The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
ressnm.1 𝐻 = (𝐺s 𝐴)
ressnm.2 𝐵 = (Base‘𝐺)
ressnm.3 0 = (0g𝐺)
ressnm.4 𝑁 = (norm‘𝐺)
Assertion
Ref Expression
ressnm ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (norm‘𝐻))

Proof of Theorem ressnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ressnm.1 . . . . 5 𝐻 = (𝐺s 𝐴)
2 ressnm.2 . . . . 5 𝐵 = (Base‘𝐺)
31, 2ressbas2 16549 . . . 4 (𝐴𝐵𝐴 = (Base‘𝐻))
433ad2ant3 1131 . . 3 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 = (Base‘𝐻))
52fvexi 6678 . . . . . . 7 𝐵 ∈ V
65ssex 5217 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
7 eqid 2821 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
81, 7ressds 16680 . . . . . 6 (𝐴 ∈ V → (dist‘𝐺) = (dist‘𝐻))
96, 8syl 17 . . . . 5 (𝐴𝐵 → (dist‘𝐺) = (dist‘𝐻))
1093ad2ant3 1131 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (dist‘𝐺) = (dist‘𝐻))
11 eqidd 2822 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑥 = 𝑥)
12 ressnm.3 . . . . 5 0 = (0g𝐺)
131, 2, 12ress0g 17933 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝐻))
1410, 11, 13oveq123d 7171 . . 3 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑥(dist‘𝐺) 0 ) = (𝑥(dist‘𝐻)(0g𝐻)))
154, 14mpteq12dv 5143 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
16 ressnm.4 . . . . . 6 𝑁 = (norm‘𝐺)
1716, 2, 12, 7nmfval 23192 . . . . 5 𝑁 = (𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 ))
1817reseq1i 5843 . . . 4 (𝑁𝐴) = ((𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴)
19 resmpt 5899 . . . 4 (𝐴𝐵 → ((𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
2018, 19syl5eq 2868 . . 3 (𝐴𝐵 → (𝑁𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
21203ad2ant3 1131 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
22 eqid 2821 . . . 4 (norm‘𝐻) = (norm‘𝐻)
23 eqid 2821 . . . 4 (Base‘𝐻) = (Base‘𝐻)
24 eqid 2821 . . . 4 (0g𝐻) = (0g𝐻)
25 eqid 2821 . . . 4 (dist‘𝐻) = (dist‘𝐻)
2622, 23, 24, 25nmfval 23192 . . 3 (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻)))
2726a1i 11 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
2815, 21, 273eqtr4d 2866 1 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (norm‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  cmpt 5138  cres 5551  cfv 6349  (class class class)co 7150  Basecbs 16477  s cress 16478  distcds 16568  0gc0g 16707  Mndcmnd 17905  normcnm 23180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-ds 16581  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-nm 23186
This theorem is referenced by:  zringnm  31196  rezh  31207
  Copyright terms: Public domain W3C validator