MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnm Structured version   Visualization version   GIF version

Theorem tngnm 24566
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnm.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngnm.x 𝑋 = (Base‘𝐺)
tngnm.a 𝐴 ∈ V
Assertion
Ref Expression
tngnm ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (norm‘𝑇))

Proof of Theorem tngnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁:𝑋𝐴)
21feqmptd 6890 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (𝑥𝑋 ↦ (𝑁𝑥)))
3 tngnm.x . . . . . . . 8 𝑋 = (Base‘𝐺)
4 eqid 2731 . . . . . . . 8 (-g𝐺) = (-g𝐺)
53, 4grpsubf 18932 . . . . . . 7 (𝐺 ∈ Grp → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
65ad2antrr 726 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
7 simpr 484 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
8 eqid 2731 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
93, 8grpidcl 18878 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
109ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (0g𝐺) ∈ 𝑋)
117, 10opelxpd 5653 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → ⟨𝑥, (0g𝐺)⟩ ∈ (𝑋 × 𝑋))
12 fvco3 6921 . . . . . 6 (((-g𝐺):(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝑥, (0g𝐺)⟩ ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)))
136, 11, 12syl2anc 584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)))
14 df-ov 7349 . . . . 5 (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩)
15 df-ov 7349 . . . . . 6 (𝑥(-g𝐺)(0g𝐺)) = ((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)
1615fveq2i 6825 . . . . 5 (𝑁‘(𝑥(-g𝐺)(0g𝐺))) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩))
1713, 14, 163eqtr4g 2791 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = (𝑁‘(𝑥(-g𝐺)(0g𝐺))))
183, 8, 4grpsubid1 18938 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥(-g𝐺)(0g𝐺)) = 𝑥)
1918adantlr 715 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑥(-g𝐺)(0g𝐺)) = 𝑥)
2019fveq2d 6826 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑁‘(𝑥(-g𝐺)(0g𝐺))) = (𝑁𝑥))
2117, 20eqtr2d 2767 . . 3 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑁𝑥) = (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)))
2221mpteq2dva 5182 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑁𝑥)) = (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))))
233fvexi 6836 . . . . . . 7 𝑋 ∈ V
24 tngnm.a . . . . . . 7 𝐴 ∈ V
25 fex2 7866 . . . . . . 7 ((𝑁:𝑋𝐴𝑋 ∈ V ∧ 𝐴 ∈ V) → 𝑁 ∈ V)
2623, 24, 25mp3an23 1455 . . . . . 6 (𝑁:𝑋𝐴𝑁 ∈ V)
2726adantl 481 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 ∈ V)
28 tngnm.t . . . . . 6 𝑇 = (𝐺 toNrmGrp 𝑁)
2928, 3tngbas 24556 . . . . 5 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
3027, 29syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑋 = (Base‘𝑇))
3128, 4tngds 24563 . . . . . 6 (𝑁 ∈ V → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3227, 31syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
33 eqidd 2732 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑥 = 𝑥)
3428, 8tng0 24558 . . . . . 6 (𝑁 ∈ V → (0g𝐺) = (0g𝑇))
3527, 34syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (0g𝐺) = (0g𝑇))
3632, 33, 35oveq123d 7367 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = (𝑥(dist‘𝑇)(0g𝑇)))
3730, 36mpteq12dv 5176 . . 3 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))) = (𝑥 ∈ (Base‘𝑇) ↦ (𝑥(dist‘𝑇)(0g𝑇))))
38 eqid 2731 . . . 4 (norm‘𝑇) = (norm‘𝑇)
39 eqid 2731 . . . 4 (Base‘𝑇) = (Base‘𝑇)
40 eqid 2731 . . . 4 (0g𝑇) = (0g𝑇)
41 eqid 2731 . . . 4 (dist‘𝑇) = (dist‘𝑇)
4238, 39, 40, 41nmfval 24503 . . 3 (norm‘𝑇) = (𝑥 ∈ (Base‘𝑇) ↦ (𝑥(dist‘𝑇)(0g𝑇)))
4337, 42eqtr4di 2784 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))) = (norm‘𝑇))
442, 22, 433eqtrd 2770 1 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (norm‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579  cmpt 5170   × cxp 5612  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  0gc0g 17343  Grpcgrp 18846  -gcsg 18848  normcnm 24491   toNrmGrp ctng 24493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-tset 17180  df-ds 17183  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-nm 24497  df-tng 24499
This theorem is referenced by:  tngngp2  24567  tngngp  24569  tngngp3  24571  nrmtngnrm  24573  tngnrg  24589  tchnmfval  25155  tcphcph  25164
  Copyright terms: Public domain W3C validator