MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnm Structured version   Visualization version   GIF version

Theorem tngnm 23721
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnm.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngnm.x 𝑋 = (Base‘𝐺)
tngnm.a 𝐴 ∈ V
Assertion
Ref Expression
tngnm ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (norm‘𝑇))

Proof of Theorem tngnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁:𝑋𝐴)
21feqmptd 6819 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (𝑥𝑋 ↦ (𝑁𝑥)))
3 tngnm.x . . . . . . . 8 𝑋 = (Base‘𝐺)
4 eqid 2738 . . . . . . . 8 (-g𝐺) = (-g𝐺)
53, 4grpsubf 18569 . . . . . . 7 (𝐺 ∈ Grp → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
65ad2antrr 722 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
7 simpr 484 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
8 eqid 2738 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
93, 8grpidcl 18522 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
109ad2antrr 722 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (0g𝐺) ∈ 𝑋)
117, 10opelxpd 5618 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → ⟨𝑥, (0g𝐺)⟩ ∈ (𝑋 × 𝑋))
12 fvco3 6849 . . . . . 6 (((-g𝐺):(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝑥, (0g𝐺)⟩ ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)))
136, 11, 12syl2anc 583 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)))
14 df-ov 7258 . . . . 5 (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩)
15 df-ov 7258 . . . . . 6 (𝑥(-g𝐺)(0g𝐺)) = ((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)
1615fveq2i 6759 . . . . 5 (𝑁‘(𝑥(-g𝐺)(0g𝐺))) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩))
1713, 14, 163eqtr4g 2804 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = (𝑁‘(𝑥(-g𝐺)(0g𝐺))))
183, 8, 4grpsubid1 18575 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥(-g𝐺)(0g𝐺)) = 𝑥)
1918adantlr 711 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑥(-g𝐺)(0g𝐺)) = 𝑥)
2019fveq2d 6760 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑁‘(𝑥(-g𝐺)(0g𝐺))) = (𝑁𝑥))
2117, 20eqtr2d 2779 . . 3 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑁𝑥) = (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)))
2221mpteq2dva 5170 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑁𝑥)) = (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))))
233fvexi 6770 . . . . . . 7 𝑋 ∈ V
24 tngnm.a . . . . . . 7 𝐴 ∈ V
25 fex2 7754 . . . . . . 7 ((𝑁:𝑋𝐴𝑋 ∈ V ∧ 𝐴 ∈ V) → 𝑁 ∈ V)
2623, 24, 25mp3an23 1451 . . . . . 6 (𝑁:𝑋𝐴𝑁 ∈ V)
2726adantl 481 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 ∈ V)
28 tngnm.t . . . . . 6 𝑇 = (𝐺 toNrmGrp 𝑁)
2928, 3tngbas 23704 . . . . 5 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
3027, 29syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑋 = (Base‘𝑇))
3128, 4tngds 23717 . . . . . 6 (𝑁 ∈ V → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3227, 31syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
33 eqidd 2739 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑥 = 𝑥)
3428, 8tng0 23708 . . . . . 6 (𝑁 ∈ V → (0g𝐺) = (0g𝑇))
3527, 34syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (0g𝐺) = (0g𝑇))
3632, 33, 35oveq123d 7276 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = (𝑥(dist‘𝑇)(0g𝑇)))
3730, 36mpteq12dv 5161 . . 3 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))) = (𝑥 ∈ (Base‘𝑇) ↦ (𝑥(dist‘𝑇)(0g𝑇))))
38 eqid 2738 . . . 4 (norm‘𝑇) = (norm‘𝑇)
39 eqid 2738 . . . 4 (Base‘𝑇) = (Base‘𝑇)
40 eqid 2738 . . . 4 (0g𝑇) = (0g𝑇)
41 eqid 2738 . . . 4 (dist‘𝑇) = (dist‘𝑇)
4238, 39, 40, 41nmfval 23650 . . 3 (norm‘𝑇) = (𝑥 ∈ (Base‘𝑇) ↦ (𝑥(dist‘𝑇)(0g𝑇)))
4337, 42eqtr4di 2797 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))) = (norm‘𝑇))
442, 22, 433eqtrd 2782 1 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (norm‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cmpt 5153   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  normcnm 23638   toNrmGrp ctng 23640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-tset 16907  df-ds 16910  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-nm 23644  df-tng 23646
This theorem is referenced by:  tngngp2  23722  tngngp  23724  tngngp3  23726  nrmtngnrm  23728  tngnrg  23744  tchnmfval  24297  tcphcph  24306
  Copyright terms: Public domain W3C validator