MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnm Structured version   Visualization version   GIF version

Theorem tngnm 23257
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnm.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngnm.x 𝑋 = (Base‘𝐺)
tngnm.a 𝐴 ∈ V
Assertion
Ref Expression
tngnm ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (norm‘𝑇))

Proof of Theorem tngnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . 3 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁:𝑋𝐴)
21feqmptd 6708 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (𝑥𝑋 ↦ (𝑁𝑥)))
3 tngnm.x . . . . . . . 8 𝑋 = (Base‘𝐺)
4 eqid 2798 . . . . . . . 8 (-g𝐺) = (-g𝐺)
53, 4grpsubf 18170 . . . . . . 7 (𝐺 ∈ Grp → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
65ad2antrr 725 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
7 simpr 488 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
8 eqid 2798 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
93, 8grpidcl 18123 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
109ad2antrr 725 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (0g𝐺) ∈ 𝑋)
117, 10opelxpd 5557 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → ⟨𝑥, (0g𝐺)⟩ ∈ (𝑋 × 𝑋))
12 fvco3 6737 . . . . . 6 (((-g𝐺):(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝑥, (0g𝐺)⟩ ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)))
136, 11, 12syl2anc 587 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)))
14 df-ov 7138 . . . . 5 (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩)
15 df-ov 7138 . . . . . 6 (𝑥(-g𝐺)(0g𝐺)) = ((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)
1615fveq2i 6648 . . . . 5 (𝑁‘(𝑥(-g𝐺)(0g𝐺))) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩))
1713, 14, 163eqtr4g 2858 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = (𝑁‘(𝑥(-g𝐺)(0g𝐺))))
183, 8, 4grpsubid1 18176 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥(-g𝐺)(0g𝐺)) = 𝑥)
1918adantlr 714 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑥(-g𝐺)(0g𝐺)) = 𝑥)
2019fveq2d 6649 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑁‘(𝑥(-g𝐺)(0g𝐺))) = (𝑁𝑥))
2117, 20eqtr2d 2834 . . 3 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑁𝑥) = (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)))
2221mpteq2dva 5125 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑁𝑥)) = (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))))
233fvexi 6659 . . . . . . 7 𝑋 ∈ V
24 tngnm.a . . . . . . 7 𝐴 ∈ V
25 fex2 7620 . . . . . . 7 ((𝑁:𝑋𝐴𝑋 ∈ V ∧ 𝐴 ∈ V) → 𝑁 ∈ V)
2623, 24, 25mp3an23 1450 . . . . . 6 (𝑁:𝑋𝐴𝑁 ∈ V)
2726adantl 485 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 ∈ V)
28 tngnm.t . . . . . 6 𝑇 = (𝐺 toNrmGrp 𝑁)
2928, 3tngbas 23247 . . . . 5 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
3027, 29syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑋 = (Base‘𝑇))
3128, 4tngds 23254 . . . . . 6 (𝑁 ∈ V → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3227, 31syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
33 eqidd 2799 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑥 = 𝑥)
3428, 8tng0 23249 . . . . . 6 (𝑁 ∈ V → (0g𝐺) = (0g𝑇))
3527, 34syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (0g𝐺) = (0g𝑇))
3632, 33, 35oveq123d 7156 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = (𝑥(dist‘𝑇)(0g𝑇)))
3730, 36mpteq12dv 5115 . . 3 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))) = (𝑥 ∈ (Base‘𝑇) ↦ (𝑥(dist‘𝑇)(0g𝑇))))
38 eqid 2798 . . . 4 (norm‘𝑇) = (norm‘𝑇)
39 eqid 2798 . . . 4 (Base‘𝑇) = (Base‘𝑇)
40 eqid 2798 . . . 4 (0g𝑇) = (0g𝑇)
41 eqid 2798 . . . 4 (dist‘𝑇) = (dist‘𝑇)
4238, 39, 40, 41nmfval 23195 . . 3 (norm‘𝑇) = (𝑥 ∈ (Base‘𝑇) ↦ (𝑥(dist‘𝑇)(0g𝑇)))
4337, 42eqtr4di 2851 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))) = (norm‘𝑇))
442, 22, 433eqtrd 2837 1 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (norm‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cop 4531  cmpt 5110   × cxp 5517  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  distcds 16566  0gc0g 16705  Grpcgrp 18095  -gcsg 18097  normcnm 23183   toNrmGrp ctng 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-tset 16576  df-ds 16579  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-nm 23189  df-tng 23191
This theorem is referenced by:  tngngp2  23258  tngngp  23260  tngngp3  23262  nrmtngnrm  23264  tngnrg  23280  tchnmfval  23832  tcphcph  23841
  Copyright terms: Public domain W3C validator