MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnm Structured version   Visualization version   GIF version

Theorem tngnm 23549
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnm.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngnm.x 𝑋 = (Base‘𝐺)
tngnm.a 𝐴 ∈ V
Assertion
Ref Expression
tngnm ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (norm‘𝑇))

Proof of Theorem tngnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . 3 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁:𝑋𝐴)
21feqmptd 6780 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (𝑥𝑋 ↦ (𝑁𝑥)))
3 tngnm.x . . . . . . . 8 𝑋 = (Base‘𝐺)
4 eqid 2737 . . . . . . . 8 (-g𝐺) = (-g𝐺)
53, 4grpsubf 18442 . . . . . . 7 (𝐺 ∈ Grp → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
65ad2antrr 726 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
7 simpr 488 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
8 eqid 2737 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
93, 8grpidcl 18395 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
109ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (0g𝐺) ∈ 𝑋)
117, 10opelxpd 5589 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → ⟨𝑥, (0g𝐺)⟩ ∈ (𝑋 × 𝑋))
12 fvco3 6810 . . . . . 6 (((-g𝐺):(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝑥, (0g𝐺)⟩ ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)))
136, 11, 12syl2anc 587 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)))
14 df-ov 7216 . . . . 5 (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩)
15 df-ov 7216 . . . . . 6 (𝑥(-g𝐺)(0g𝐺)) = ((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)
1615fveq2i 6720 . . . . 5 (𝑁‘(𝑥(-g𝐺)(0g𝐺))) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩))
1713, 14, 163eqtr4g 2803 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = (𝑁‘(𝑥(-g𝐺)(0g𝐺))))
183, 8, 4grpsubid1 18448 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥(-g𝐺)(0g𝐺)) = 𝑥)
1918adantlr 715 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑥(-g𝐺)(0g𝐺)) = 𝑥)
2019fveq2d 6721 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑁‘(𝑥(-g𝐺)(0g𝐺))) = (𝑁𝑥))
2117, 20eqtr2d 2778 . . 3 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑁𝑥) = (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)))
2221mpteq2dva 5150 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑁𝑥)) = (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))))
233fvexi 6731 . . . . . . 7 𝑋 ∈ V
24 tngnm.a . . . . . . 7 𝐴 ∈ V
25 fex2 7711 . . . . . . 7 ((𝑁:𝑋𝐴𝑋 ∈ V ∧ 𝐴 ∈ V) → 𝑁 ∈ V)
2623, 24, 25mp3an23 1455 . . . . . 6 (𝑁:𝑋𝐴𝑁 ∈ V)
2726adantl 485 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 ∈ V)
28 tngnm.t . . . . . 6 𝑇 = (𝐺 toNrmGrp 𝑁)
2928, 3tngbas 23539 . . . . 5 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
3027, 29syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑋 = (Base‘𝑇))
3128, 4tngds 23546 . . . . . 6 (𝑁 ∈ V → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3227, 31syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
33 eqidd 2738 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑥 = 𝑥)
3428, 8tng0 23541 . . . . . 6 (𝑁 ∈ V → (0g𝐺) = (0g𝑇))
3527, 34syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (0g𝐺) = (0g𝑇))
3632, 33, 35oveq123d 7234 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = (𝑥(dist‘𝑇)(0g𝑇)))
3730, 36mpteq12dv 5140 . . 3 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))) = (𝑥 ∈ (Base‘𝑇) ↦ (𝑥(dist‘𝑇)(0g𝑇))))
38 eqid 2737 . . . 4 (norm‘𝑇) = (norm‘𝑇)
39 eqid 2737 . . . 4 (Base‘𝑇) = (Base‘𝑇)
40 eqid 2737 . . . 4 (0g𝑇) = (0g𝑇)
41 eqid 2737 . . . 4 (dist‘𝑇) = (dist‘𝑇)
4238, 39, 40, 41nmfval 23486 . . 3 (norm‘𝑇) = (𝑥 ∈ (Base‘𝑇) ↦ (𝑥(dist‘𝑇)(0g𝑇)))
4337, 42eqtr4di 2796 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))) = (norm‘𝑇))
442, 22, 433eqtrd 2781 1 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (norm‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  cop 4547  cmpt 5135   × cxp 5549  ccom 5555  wf 6376  cfv 6380  (class class class)co 7213  Basecbs 16760  distcds 16811  0gc0g 16944  Grpcgrp 18365  -gcsg 18367  normcnm 23474   toNrmGrp ctng 23476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-tset 16821  df-ds 16824  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-nm 23480  df-tng 23482
This theorem is referenced by:  tngngp2  23550  tngngp  23552  tngngp3  23554  nrmtngnrm  23556  tngnrg  23572  tchnmfval  24125  tcphcph  24134
  Copyright terms: Public domain W3C validator