MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnm Structured version   Visualization version   GIF version

Theorem tngnm 24595
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnm.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngnm.x 𝑋 = (Base‘𝐺)
tngnm.a 𝐴 ∈ V
Assertion
Ref Expression
tngnm ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (norm‘𝑇))

Proof of Theorem tngnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁:𝑋𝐴)
21feqmptd 6952 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (𝑥𝑋 ↦ (𝑁𝑥)))
3 tngnm.x . . . . . . . 8 𝑋 = (Base‘𝐺)
4 eqid 2736 . . . . . . . 8 (-g𝐺) = (-g𝐺)
53, 4grpsubf 19007 . . . . . . 7 (𝐺 ∈ Grp → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
65ad2antrr 726 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
7 simpr 484 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
8 eqid 2736 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
93, 8grpidcl 18953 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
109ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (0g𝐺) ∈ 𝑋)
117, 10opelxpd 5698 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → ⟨𝑥, (0g𝐺)⟩ ∈ (𝑋 × 𝑋))
12 fvco3 6983 . . . . . 6 (((-g𝐺):(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝑥, (0g𝐺)⟩ ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)))
136, 11, 12syl2anc 584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)))
14 df-ov 7413 . . . . 5 (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = ((𝑁 ∘ (-g𝐺))‘⟨𝑥, (0g𝐺)⟩)
15 df-ov 7413 . . . . . 6 (𝑥(-g𝐺)(0g𝐺)) = ((-g𝐺)‘⟨𝑥, (0g𝐺)⟩)
1615fveq2i 6884 . . . . 5 (𝑁‘(𝑥(-g𝐺)(0g𝐺))) = (𝑁‘((-g𝐺)‘⟨𝑥, (0g𝐺)⟩))
1713, 14, 163eqtr4g 2796 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = (𝑁‘(𝑥(-g𝐺)(0g𝐺))))
183, 8, 4grpsubid1 19013 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥(-g𝐺)(0g𝐺)) = 𝑥)
1918adantlr 715 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑥(-g𝐺)(0g𝐺)) = 𝑥)
2019fveq2d 6885 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑁‘(𝑥(-g𝐺)(0g𝐺))) = (𝑁𝑥))
2117, 20eqtr2d 2772 . . 3 (((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) ∧ 𝑥𝑋) → (𝑁𝑥) = (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)))
2221mpteq2dva 5219 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑁𝑥)) = (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))))
233fvexi 6895 . . . . . . 7 𝑋 ∈ V
24 tngnm.a . . . . . . 7 𝐴 ∈ V
25 fex2 7937 . . . . . . 7 ((𝑁:𝑋𝐴𝑋 ∈ V ∧ 𝐴 ∈ V) → 𝑁 ∈ V)
2623, 24, 25mp3an23 1455 . . . . . 6 (𝑁:𝑋𝐴𝑁 ∈ V)
2726adantl 481 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 ∈ V)
28 tngnm.t . . . . . 6 𝑇 = (𝐺 toNrmGrp 𝑁)
2928, 3tngbas 24585 . . . . 5 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
3027, 29syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑋 = (Base‘𝑇))
3128, 4tngds 24592 . . . . . 6 (𝑁 ∈ V → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3227, 31syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
33 eqidd 2737 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑥 = 𝑥)
3428, 8tng0 24587 . . . . . 6 (𝑁 ∈ V → (0g𝐺) = (0g𝑇))
3527, 34syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (0g𝐺) = (0g𝑇))
3632, 33, 35oveq123d 7431 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺)) = (𝑥(dist‘𝑇)(0g𝑇)))
3730, 36mpteq12dv 5212 . . 3 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))) = (𝑥 ∈ (Base‘𝑇) ↦ (𝑥(dist‘𝑇)(0g𝑇))))
38 eqid 2736 . . . 4 (norm‘𝑇) = (norm‘𝑇)
39 eqid 2736 . . . 4 (Base‘𝑇) = (Base‘𝑇)
40 eqid 2736 . . . 4 (0g𝑇) = (0g𝑇)
41 eqid 2736 . . . 4 (dist‘𝑇) = (dist‘𝑇)
4238, 39, 40, 41nmfval 24532 . . 3 (norm‘𝑇) = (𝑥 ∈ (Base‘𝑇) ↦ (𝑥(dist‘𝑇)(0g𝑇)))
4337, 42eqtr4di 2789 . 2 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → (𝑥𝑋 ↦ (𝑥(𝑁 ∘ (-g𝐺))(0g𝐺))) = (norm‘𝑇))
442, 22, 433eqtrd 2775 1 ((𝐺 ∈ Grp ∧ 𝑁:𝑋𝐴) → 𝑁 = (norm‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612  cmpt 5206   × cxp 5657  ccom 5663  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  distcds 17285  0gc0g 17458  Grpcgrp 18921  -gcsg 18923  normcnm 24520   toNrmGrp ctng 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-tset 17295  df-ds 17298  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-nm 24526  df-tng 24528
This theorem is referenced by:  tngngp2  24596  tngngp  24598  tngngp3  24600  nrmtngnrm  24602  tngnrg  24618  tchnmfval  25185  tcphcph  25194
  Copyright terms: Public domain W3C validator