MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgnm Structured version   Visualization version   GIF version

Theorem subgnm 24493
Description: The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
subgngp.h 𝐻 = (𝐺s 𝐴)
subgnm.n 𝑁 = (norm‘𝐺)
subgnm.m 𝑀 = (norm‘𝐻)
Assertion
Ref Expression
subgnm (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁𝐴))

Proof of Theorem subgnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
21subgss 19052 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
32resmptd 6033 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺))) ↾ 𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺)(0g𝐺))))
4 subgngp.h . . . . 5 𝐻 = (𝐺s 𝐴)
54subgbas 19055 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
6 eqid 2726 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
74, 6ressds 17362 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻))
8 eqidd 2727 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → 𝑥 = 𝑥)
9 eqid 2726 . . . . . 6 (0g𝐺) = (0g𝐺)
104, 9subg0 19057 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
117, 8, 10oveq123d 7425 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥(dist‘𝐺)(0g𝐺)) = (𝑥(dist‘𝐻)(0g𝐻)))
125, 11mpteq12dv 5232 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥𝐴 ↦ (𝑥(dist‘𝐺)(0g𝐺))) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
133, 12eqtr2d 2767 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺))) ↾ 𝐴))
14 subgnm.m . . 3 𝑀 = (norm‘𝐻)
15 eqid 2726 . . 3 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2726 . . 3 (0g𝐻) = (0g𝐻)
17 eqid 2726 . . 3 (dist‘𝐻) = (dist‘𝐻)
1814, 15, 16, 17nmfval 24448 . 2 𝑀 = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻)))
19 subgnm.n . . . 4 𝑁 = (norm‘𝐺)
2019, 1, 9, 6nmfval 24448 . . 3 𝑁 = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺)))
2120reseq1i 5970 . 2 (𝑁𝐴) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺))) ↾ 𝐴)
2213, 18, 213eqtr4g 2791 1 (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cmpt 5224  cres 5671  cfv 6536  (class class class)co 7404  Basecbs 17151  s cress 17180  distcds 17213  0gc0g 17392  SubGrpcsubg 19045  normcnm 24436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-ds 17226  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-subg 19048  df-nm 24442
This theorem is referenced by:  subgnm2  24494  subrgnrg  24541  isncvsngp  25028  cphsscph  25130
  Copyright terms: Public domain W3C validator