MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgnm Structured version   Visualization version   GIF version

Theorem subgnm 24005
Description: The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
subgngp.h 𝐻 = (𝐺s 𝐴)
subgnm.n 𝑁 = (norm‘𝐺)
subgnm.m 𝑀 = (norm‘𝐻)
Assertion
Ref Expression
subgnm (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁𝐴))

Proof of Theorem subgnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
21subgss 18936 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
32resmptd 5999 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺))) ↾ 𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺)(0g𝐺))))
4 subgngp.h . . . . 5 𝐻 = (𝐺s 𝐴)
54subgbas 18939 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
6 eqid 2737 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
74, 6ressds 17298 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻))
8 eqidd 2738 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → 𝑥 = 𝑥)
9 eqid 2737 . . . . . 6 (0g𝐺) = (0g𝐺)
104, 9subg0 18941 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
117, 8, 10oveq123d 7383 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥(dist‘𝐺)(0g𝐺)) = (𝑥(dist‘𝐻)(0g𝐻)))
125, 11mpteq12dv 5201 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥𝐴 ↦ (𝑥(dist‘𝐺)(0g𝐺))) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
133, 12eqtr2d 2778 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺))) ↾ 𝐴))
14 subgnm.m . . 3 𝑀 = (norm‘𝐻)
15 eqid 2737 . . 3 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2737 . . 3 (0g𝐻) = (0g𝐻)
17 eqid 2737 . . 3 (dist‘𝐻) = (dist‘𝐻)
1814, 15, 16, 17nmfval 23960 . 2 𝑀 = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻)))
19 subgnm.n . . . 4 𝑁 = (norm‘𝐺)
2019, 1, 9, 6nmfval 23960 . . 3 𝑁 = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺)))
2120reseq1i 5938 . 2 (𝑁𝐴) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺))) ↾ 𝐴)
2213, 18, 213eqtr4g 2802 1 (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cmpt 5193  cres 5640  cfv 6501  (class class class)co 7362  Basecbs 17090  s cress 17119  distcds 17149  0gc0g 17328  SubGrpcsubg 18929  normcnm 23948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-ds 17162  df-0g 17330  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-grp 18758  df-subg 18932  df-nm 23954
This theorem is referenced by:  subgnm2  24006  subrgnrg  24053  isncvsngp  24529  cphsscph  24631
  Copyright terms: Public domain W3C validator