Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgnm | Structured version Visualization version GIF version |
Description: The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
subgngp.h | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
subgnm.n | ⊢ 𝑁 = (norm‘𝐺) |
subgnm.m | ⊢ 𝑀 = (norm‘𝐻) |
Ref | Expression |
---|---|
subgnm | ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | subgss 18823 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺)) |
3 | 2 | resmptd 5965 | . . 3 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺)(0g‘𝐺)))) |
4 | subgngp.h | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
5 | 4 | subgbas 18826 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻)) |
6 | eqid 2737 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
7 | 4, 6 | ressds 17187 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻)) |
8 | eqidd 2738 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝑥 = 𝑥) | |
9 | eqid 2737 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
10 | 4, 9 | subg0 18828 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (0g‘𝐺) = (0g‘𝐻)) |
11 | 7, 8, 10 | oveq123d 7334 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥(dist‘𝐺)(0g‘𝐺)) = (𝑥(dist‘𝐻)(0g‘𝐻))) |
12 | 5, 11 | mpteq12dv 5176 | . . 3 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻)))) |
13 | 3, 12 | eqtr2d 2778 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻))) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) ↾ 𝐴)) |
14 | subgnm.m | . . 3 ⊢ 𝑀 = (norm‘𝐻) | |
15 | eqid 2737 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
16 | eqid 2737 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
17 | eqid 2737 | . . 3 ⊢ (dist‘𝐻) = (dist‘𝐻) | |
18 | 14, 15, 16, 17 | nmfval 23815 | . 2 ⊢ 𝑀 = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻))) |
19 | subgnm.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
20 | 19, 1, 9, 6 | nmfval 23815 | . . 3 ⊢ 𝑁 = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) |
21 | 20 | reseq1i 5904 | . 2 ⊢ (𝑁 ↾ 𝐴) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) ↾ 𝐴) |
22 | 13, 18, 21 | 3eqtr4g 2802 | 1 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ↦ cmpt 5168 ↾ cres 5607 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 ↾s cress 17008 distcds 17038 0gc0g 17217 SubGrpcsubg 18816 normcnm 23803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-ds 17051 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 df-subg 18819 df-nm 23809 |
This theorem is referenced by: subgnm2 23861 subrgnrg 23908 isncvsngp 24384 cphsscph 24486 |
Copyright terms: Public domain | W3C validator |