| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgnm | Structured version Visualization version GIF version | ||
| Description: The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| subgngp.h | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| subgnm.n | ⊢ 𝑁 = (norm‘𝐺) |
| subgnm.m | ⊢ 𝑀 = (norm‘𝐻) |
| Ref | Expression |
|---|---|
| subgnm | ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | subgss 19115 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺)) |
| 3 | 2 | resmptd 6032 | . . 3 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺)(0g‘𝐺)))) |
| 4 | subgngp.h | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 5 | 4 | subgbas 19118 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻)) |
| 6 | eqid 2736 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 7 | 4, 6 | ressds 17429 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻)) |
| 8 | eqidd 2737 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝑥 = 𝑥) | |
| 9 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 10 | 4, 9 | subg0 19120 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (0g‘𝐺) = (0g‘𝐻)) |
| 11 | 7, 8, 10 | oveq123d 7431 | . . . 4 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥(dist‘𝐺)(0g‘𝐺)) = (𝑥(dist‘𝐻)(0g‘𝐻))) |
| 12 | 5, 11 | mpteq12dv 5212 | . . 3 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻)))) |
| 13 | 3, 12 | eqtr2d 2772 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻))) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) ↾ 𝐴)) |
| 14 | subgnm.m | . . 3 ⊢ 𝑀 = (norm‘𝐻) | |
| 15 | eqid 2736 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 16 | eqid 2736 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 17 | eqid 2736 | . . 3 ⊢ (dist‘𝐻) = (dist‘𝐻) | |
| 18 | 14, 15, 16, 17 | nmfval 24532 | . 2 ⊢ 𝑀 = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻))) |
| 19 | subgnm.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
| 20 | 19, 1, 9, 6 | nmfval 24532 | . . 3 ⊢ 𝑁 = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) |
| 21 | 20 | reseq1i 5967 | . 2 ⊢ (𝑁 ↾ 𝐴) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g‘𝐺))) ↾ 𝐴) |
| 22 | 13, 18, 21 | 3eqtr4g 2796 | 1 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 distcds 17285 0gc0g 17458 SubGrpcsubg 19108 normcnm 24520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-ds 17298 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-subg 19111 df-nm 24526 |
| This theorem is referenced by: subgnm2 24578 subrgnrg 24617 isncvsngp 25106 cphsscph 25208 |
| Copyright terms: Public domain | W3C validator |