MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgnm Structured version   Visualization version   GIF version

Theorem subgnm 23860
Description: The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
subgngp.h 𝐻 = (𝐺s 𝐴)
subgnm.n 𝑁 = (norm‘𝐺)
subgnm.m 𝑀 = (norm‘𝐻)
Assertion
Ref Expression
subgnm (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁𝐴))

Proof of Theorem subgnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
21subgss 18823 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
32resmptd 5965 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺))) ↾ 𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺)(0g𝐺))))
4 subgngp.h . . . . 5 𝐻 = (𝐺s 𝐴)
54subgbas 18826 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
6 eqid 2737 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
74, 6ressds 17187 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻))
8 eqidd 2738 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → 𝑥 = 𝑥)
9 eqid 2737 . . . . . 6 (0g𝐺) = (0g𝐺)
104, 9subg0 18828 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
117, 8, 10oveq123d 7334 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥(dist‘𝐺)(0g𝐺)) = (𝑥(dist‘𝐻)(0g𝐻)))
125, 11mpteq12dv 5176 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥𝐴 ↦ (𝑥(dist‘𝐺)(0g𝐺))) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
133, 12eqtr2d 2778 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺))) ↾ 𝐴))
14 subgnm.m . . 3 𝑀 = (norm‘𝐻)
15 eqid 2737 . . 3 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2737 . . 3 (0g𝐻) = (0g𝐻)
17 eqid 2737 . . 3 (dist‘𝐻) = (dist‘𝐻)
1814, 15, 16, 17nmfval 23815 . 2 𝑀 = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻)))
19 subgnm.n . . . 4 𝑁 = (norm‘𝐺)
2019, 1, 9, 6nmfval 23815 . . 3 𝑁 = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺)))
2120reseq1i 5904 . 2 (𝑁𝐴) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥(dist‘𝐺)(0g𝐺))) ↾ 𝐴)
2213, 18, 213eqtr4g 2802 1 (𝐴 ∈ (SubGrp‘𝐺) → 𝑀 = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cmpt 5168  cres 5607  cfv 6463  (class class class)co 7313  Basecbs 16979  s cress 17008  distcds 17038  0gc0g 17217  SubGrpcsubg 18816  normcnm 23803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-z 12390  df-dec 12508  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-ress 17009  df-plusg 17042  df-ds 17051  df-0g 17219  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-grp 18647  df-subg 18819  df-nm 23809
This theorem is referenced by:  subgnm2  23861  subrgnrg  23908  isncvsngp  24384  cphsscph  24486
  Copyright terms: Public domain W3C validator