Proof of Theorem pmapj2N
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ HL) |
2 | | hllat 37377 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
3 | 2 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
4 | | hlop 37376 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
5 | 4 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
6 | | simp2 1136 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
7 | | pmapj2.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
8 | | eqid 2738 |
. . . . . 6
⊢
(oc‘𝐾) =
(oc‘𝐾) |
9 | 7, 8 | opoccl 37208 |
. . . . 5
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
10 | 5, 6, 9 | syl2anc 584 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
11 | | simp3 1137 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
12 | 7, 8 | opoccl 37208 |
. . . . 5
⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵) |
13 | 5, 11, 12 | syl2anc 584 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵) |
14 | | eqid 2738 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
15 | 7, 14 | latmcl 18158 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧
((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵) |
16 | 3, 10, 13, 15 | syl3anc 1370 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵) |
17 | | pmapj2.m |
. . . 4
⊢ 𝑀 = (pmap‘𝐾) |
18 | | pmapj2.o |
. . . 4
⊢ ⊥ =
(⊥𝑃‘𝐾) |
19 | 7, 8, 17, 18 | polpmapN 37926 |
. . 3
⊢ ((𝐾 ∈ HL ∧
(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵) → ( ⊥ ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))))) |
20 | 1, 16, 19 | syl2anc 584 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))))) |
21 | 7, 8, 17, 18 | polpmapN 37926 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘(𝑀‘𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋))) |
22 | 21 | 3adant3 1131 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑀‘𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋))) |
23 | 7, 8, 17, 18 | polpmapN 37926 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑀‘𝑌)) = (𝑀‘((oc‘𝐾)‘𝑌))) |
24 | 23 | 3adant2 1130 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑀‘𝑌)) = (𝑀‘((oc‘𝐾)‘𝑌))) |
25 | 22, 24 | ineq12d 4147 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘(𝑀‘𝑋)) ∩ ( ⊥ ‘(𝑀‘𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌)))) |
26 | | eqid 2738 |
. . . . . . 7
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
27 | 7, 26, 17 | pmapssat 37773 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) |
28 | 27 | 3adant3 1131 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) |
29 | 7, 26, 17 | pmapssat 37773 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵) → (𝑀‘𝑌) ⊆ (Atoms‘𝐾)) |
30 | 29 | 3adant2 1130 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘𝑌) ⊆ (Atoms‘𝐾)) |
31 | | pmapj2.p |
. . . . . 6
⊢ + =
(+𝑃‘𝐾) |
32 | 26, 31, 18 | poldmj1N 37942 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑀‘𝑋) ⊆ (Atoms‘𝐾) ∧ (𝑀‘𝑌) ⊆ (Atoms‘𝐾)) → ( ⊥ ‘((𝑀‘𝑋) + (𝑀‘𝑌))) = (( ⊥ ‘(𝑀‘𝑋)) ∩ ( ⊥ ‘(𝑀‘𝑌)))) |
33 | 1, 28, 30, 32 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘((𝑀‘𝑋) + (𝑀‘𝑌))) = (( ⊥ ‘(𝑀‘𝑋)) ∩ ( ⊥ ‘(𝑀‘𝑌)))) |
34 | 7, 14, 26, 17 | pmapmeet 37787 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧
((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌)))) |
35 | 1, 10, 13, 34 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌)))) |
36 | 25, 33, 35 | 3eqtr4rd 2789 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ( ⊥ ‘((𝑀‘𝑋) + (𝑀‘𝑌)))) |
37 | 36 | fveq2d 6778 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = ( ⊥ ‘( ⊥
‘((𝑀‘𝑋) + (𝑀‘𝑌))))) |
38 | | hlol 37375 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
39 | | pmapj2.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
40 | 7, 39, 14, 8 | oldmm4 37234 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 ∨ 𝑌)) |
41 | 38, 40 | syl3an1 1162 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 ∨ 𝑌)) |
42 | 41 | fveq2d 6778 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘(𝑋 ∨ 𝑌))) |
43 | 20, 37, 42 | 3eqtr3rd 2787 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘(𝑋 ∨ 𝑌)) = ( ⊥ ‘( ⊥
‘((𝑀‘𝑋) + (𝑀‘𝑌))))) |