Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapj2N Structured version   Visualization version   GIF version

Theorem pmapj2N 39886
Description: The projective map of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapj2.b 𝐵 = (Base‘𝐾)
pmapj2.j = (join‘𝐾)
pmapj2.m 𝑀 = (pmap‘𝐾)
pmapj2.p + = (+𝑃𝐾)
pmapj2.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pmapj2N ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(𝑋 𝑌)) = ( ‘( ‘((𝑀𝑋) + (𝑀𝑌)))))

Proof of Theorem pmapj2N
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
2 hllat 39319 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
323ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
4 hlop 39318 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
543ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
6 simp2 1137 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
7 pmapj2.b . . . . . 6 𝐵 = (Base‘𝐾)
8 eqid 2740 . . . . . 6 (oc‘𝐾) = (oc‘𝐾)
97, 8opoccl 39150 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
105, 6, 9syl2anc 583 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
11 simp3 1138 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
127, 8opoccl 39150 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
135, 11, 12syl2anc 583 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
14 eqid 2740 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
157, 14latmcl 18510 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
163, 10, 13, 15syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
17 pmapj2.m . . . 4 𝑀 = (pmap‘𝐾)
18 pmapj2.o . . . 4 = (⊥𝑃𝐾)
197, 8, 17, 18polpmapN 39869 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵) → ( ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
201, 16, 19syl2anc 583 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
217, 8, 17, 18polpmapN 39869 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘(𝑀𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋)))
22213adant3 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋)))
237, 8, 17, 18polpmapN 39869 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐵) → ( ‘(𝑀𝑌)) = (𝑀‘((oc‘𝐾)‘𝑌)))
24233adant2 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀𝑌)) = (𝑀‘((oc‘𝐾)‘𝑌)))
2522, 24ineq12d 4242 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (( ‘(𝑀𝑋)) ∩ ( ‘(𝑀𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌))))
26 eqid 2740 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
277, 26, 17pmapssat 39716 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
28273adant3 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
297, 26, 17pmapssat 39716 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
30293adant2 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
31 pmapj2.p . . . . . 6 + = (+𝑃𝐾)
3226, 31, 18poldmj1N 39885 . . . . 5 ((𝐾 ∈ HL ∧ (𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ (𝑀𝑌) ⊆ (Atoms‘𝐾)) → ( ‘((𝑀𝑋) + (𝑀𝑌))) = (( ‘(𝑀𝑋)) ∩ ( ‘(𝑀𝑌))))
331, 28, 30, 32syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘((𝑀𝑋) + (𝑀𝑌))) = (( ‘(𝑀𝑋)) ∩ ( ‘(𝑀𝑌))))
347, 14, 26, 17pmapmeet 39730 . . . . 5 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌))))
351, 10, 13, 34syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌))))
3625, 33, 353eqtr4rd 2791 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ( ‘((𝑀𝑋) + (𝑀𝑌))))
3736fveq2d 6924 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = ( ‘( ‘((𝑀𝑋) + (𝑀𝑌)))))
38 hlol 39317 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
39 pmapj2.j . . . . 5 = (join‘𝐾)
407, 39, 14, 8oldmm4 39176 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
4138, 40syl3an1 1163 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
4241fveq2d 6924 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘(𝑋 𝑌)))
4320, 37, 423eqtr3rd 2789 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(𝑋 𝑌)) = ( ‘( ‘((𝑀𝑋) + (𝑀𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  cin 3975  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  occoc 17319  joincjn 18381  meetcmee 18382  Latclat 18501  OPcops 39128  OLcol 39130  Atomscatm 39219  HLchlt 39306  pmapcpmap 39454  +𝑃cpadd 39752  𝑃cpolN 39859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-polarityN 39860
This theorem is referenced by:  pmapocjN  39887  pmapojoinN  39925
  Copyright terms: Public domain W3C validator