Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapj2N Structured version   Visualization version   GIF version

Theorem pmapj2N 37943
Description: The projective map of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapj2.b 𝐵 = (Base‘𝐾)
pmapj2.j = (join‘𝐾)
pmapj2.m 𝑀 = (pmap‘𝐾)
pmapj2.p + = (+𝑃𝐾)
pmapj2.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pmapj2N ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(𝑋 𝑌)) = ( ‘( ‘((𝑀𝑋) + (𝑀𝑌)))))

Proof of Theorem pmapj2N
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
2 hllat 37377 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
323ad2ant1 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
4 hlop 37376 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
543ad2ant1 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
6 simp2 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
7 pmapj2.b . . . . . 6 𝐵 = (Base‘𝐾)
8 eqid 2738 . . . . . 6 (oc‘𝐾) = (oc‘𝐾)
97, 8opoccl 37208 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
105, 6, 9syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
11 simp3 1137 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
127, 8opoccl 37208 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
135, 11, 12syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
14 eqid 2738 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
157, 14latmcl 18158 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
163, 10, 13, 15syl3anc 1370 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
17 pmapj2.m . . . 4 𝑀 = (pmap‘𝐾)
18 pmapj2.o . . . 4 = (⊥𝑃𝐾)
197, 8, 17, 18polpmapN 37926 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵) → ( ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
201, 16, 19syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
217, 8, 17, 18polpmapN 37926 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘(𝑀𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋)))
22213adant3 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋)))
237, 8, 17, 18polpmapN 37926 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐵) → ( ‘(𝑀𝑌)) = (𝑀‘((oc‘𝐾)‘𝑌)))
24233adant2 1130 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀𝑌)) = (𝑀‘((oc‘𝐾)‘𝑌)))
2522, 24ineq12d 4147 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (( ‘(𝑀𝑋)) ∩ ( ‘(𝑀𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌))))
26 eqid 2738 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
277, 26, 17pmapssat 37773 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
28273adant3 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
297, 26, 17pmapssat 37773 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
30293adant2 1130 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
31 pmapj2.p . . . . . 6 + = (+𝑃𝐾)
3226, 31, 18poldmj1N 37942 . . . . 5 ((𝐾 ∈ HL ∧ (𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ (𝑀𝑌) ⊆ (Atoms‘𝐾)) → ( ‘((𝑀𝑋) + (𝑀𝑌))) = (( ‘(𝑀𝑋)) ∩ ( ‘(𝑀𝑌))))
331, 28, 30, 32syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘((𝑀𝑋) + (𝑀𝑌))) = (( ‘(𝑀𝑋)) ∩ ( ‘(𝑀𝑌))))
347, 14, 26, 17pmapmeet 37787 . . . . 5 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌))))
351, 10, 13, 34syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌))))
3625, 33, 353eqtr4rd 2789 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ( ‘((𝑀𝑋) + (𝑀𝑌))))
3736fveq2d 6778 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = ( ‘( ‘((𝑀𝑋) + (𝑀𝑌)))))
38 hlol 37375 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
39 pmapj2.j . . . . 5 = (join‘𝐾)
407, 39, 14, 8oldmm4 37234 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
4138, 40syl3an1 1162 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
4241fveq2d 6778 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘(𝑋 𝑌)))
4320, 37, 423eqtr3rd 2787 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(𝑋 𝑌)) = ( ‘( ‘((𝑀𝑋) + (𝑀𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cin 3886  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  occoc 16970  joincjn 18029  meetcmee 18030  Latclat 18149  OPcops 37186  OLcol 37188  Atomscatm 37277  HLchlt 37364  pmapcpmap 37511  +𝑃cpadd 37809  𝑃cpolN 37916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-polarityN 37917
This theorem is referenced by:  pmapocjN  37944  pmapojoinN  37982
  Copyright terms: Public domain W3C validator