Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapj2N Structured version   Visualization version   GIF version

Theorem pmapj2N 38248
Description: The projective map of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapj2.b 𝐵 = (Base‘𝐾)
pmapj2.j = (join‘𝐾)
pmapj2.m 𝑀 = (pmap‘𝐾)
pmapj2.p + = (+𝑃𝐾)
pmapj2.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pmapj2N ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(𝑋 𝑌)) = ( ‘( ‘((𝑀𝑋) + (𝑀𝑌)))))

Proof of Theorem pmapj2N
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
2 hllat 37681 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
323ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
4 hlop 37680 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
543ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
6 simp2 1137 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
7 pmapj2.b . . . . . 6 𝐵 = (Base‘𝐾)
8 eqid 2737 . . . . . 6 (oc‘𝐾) = (oc‘𝐾)
97, 8opoccl 37512 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
105, 6, 9syl2anc 585 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
11 simp3 1138 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
127, 8opoccl 37512 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
135, 11, 12syl2anc 585 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
14 eqid 2737 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
157, 14latmcl 18260 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
163, 10, 13, 15syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
17 pmapj2.m . . . 4 𝑀 = (pmap‘𝐾)
18 pmapj2.o . . . 4 = (⊥𝑃𝐾)
197, 8, 17, 18polpmapN 38231 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵) → ( ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
201, 16, 19syl2anc 585 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
217, 8, 17, 18polpmapN 38231 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘(𝑀𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋)))
22213adant3 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋)))
237, 8, 17, 18polpmapN 38231 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐵) → ( ‘(𝑀𝑌)) = (𝑀‘((oc‘𝐾)‘𝑌)))
24233adant2 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀𝑌)) = (𝑀‘((oc‘𝐾)‘𝑌)))
2522, 24ineq12d 4168 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (( ‘(𝑀𝑋)) ∩ ( ‘(𝑀𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌))))
26 eqid 2737 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
277, 26, 17pmapssat 38078 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
28273adant3 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
297, 26, 17pmapssat 38078 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
30293adant2 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
31 pmapj2.p . . . . . 6 + = (+𝑃𝐾)
3226, 31, 18poldmj1N 38247 . . . . 5 ((𝐾 ∈ HL ∧ (𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ (𝑀𝑌) ⊆ (Atoms‘𝐾)) → ( ‘((𝑀𝑋) + (𝑀𝑌))) = (( ‘(𝑀𝑋)) ∩ ( ‘(𝑀𝑌))))
331, 28, 30, 32syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘((𝑀𝑋) + (𝑀𝑌))) = (( ‘(𝑀𝑋)) ∩ ( ‘(𝑀𝑌))))
347, 14, 26, 17pmapmeet 38092 . . . . 5 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌))))
351, 10, 13, 34syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ((𝑀‘((oc‘𝐾)‘𝑋)) ∩ (𝑀‘((oc‘𝐾)‘𝑌))))
3625, 33, 353eqtr4rd 2788 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = ( ‘((𝑀𝑋) + (𝑀𝑌))))
3736fveq2d 6838 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑀‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = ( ‘( ‘((𝑀𝑋) + (𝑀𝑌)))))
38 hlol 37679 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
39 pmapj2.j . . . . 5 = (join‘𝐾)
407, 39, 14, 8oldmm4 37538 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
4138, 40syl3an1 1163 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
4241fveq2d 6838 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))) = (𝑀‘(𝑋 𝑌)))
4320, 37, 423eqtr3rd 2786 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(𝑋 𝑌)) = ( ‘( ‘((𝑀𝑋) + (𝑀𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  cin 3904  wss 3905  cfv 6488  (class class class)co 7346  Basecbs 17014  occoc 17072  joincjn 18131  meetcmee 18132  Latclat 18251  OPcops 37490  OLcol 37492  Atomscatm 37581  HLchlt 37668  pmapcpmap 37816  +𝑃cpadd 38114  𝑃cpolN 38221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-iin 4952  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7908  df-2nd 7909  df-proset 18115  df-poset 18133  df-plt 18150  df-lub 18166  df-glb 18167  df-join 18168  df-meet 18169  df-p0 18245  df-p1 18246  df-lat 18252  df-clat 18319  df-oposet 37494  df-ol 37496  df-oml 37497  df-covers 37584  df-ats 37585  df-atl 37616  df-cvlat 37640  df-hlat 37669  df-psubsp 37822  df-pmap 37823  df-padd 38115  df-polarityN 38222
This theorem is referenced by:  pmapocjN  38249  pmapojoinN  38287
  Copyright terms: Public domain W3C validator