| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naddwordnexlem1 | Structured version Visualization version GIF version | ||
| Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, 𝐵 is equal to or larger than 𝐴. (Contributed by RP, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| naddwordnex.a | ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) |
| naddwordnex.b | ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) |
| naddwordnex.c | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| naddwordnex.d | ⊢ (𝜑 → 𝐷 ∈ On) |
| naddwordnex.m | ⊢ (𝜑 → 𝑀 ∈ ω) |
| naddwordnex.n | ⊢ (𝜑 → 𝑁 ∈ 𝑀) |
| Ref | Expression |
|---|---|
| naddwordnexlem1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naddwordnex.a | . . 3 ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) | |
| 2 | naddwordnex.b | . . 3 ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) | |
| 3 | naddwordnex.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
| 4 | naddwordnex.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ On) | |
| 5 | naddwordnex.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ω) | |
| 6 | naddwordnex.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑀) | |
| 7 | 1, 2, 3, 4, 5, 6 | naddwordnexlem0 43386 | . 2 ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) |
| 8 | omelon 9668 | . . . . . . 7 ⊢ ω ∈ On | |
| 9 | onelon 6388 | . . . . . . . . 9 ⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ 𝐷) → 𝐶 ∈ On) | |
| 10 | 4, 3, 9 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ On) |
| 11 | onsuc 7813 | . . . . . . . 8 ⊢ (𝐶 ∈ On → suc 𝐶 ∈ On) | |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → suc 𝐶 ∈ On) |
| 13 | omcl 8556 | . . . . . . 7 ⊢ ((ω ∈ On ∧ suc 𝐶 ∈ On) → (ω ·o suc 𝐶) ∈ On) | |
| 14 | 8, 12, 13 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (ω ·o suc 𝐶) ∈ On) |
| 15 | onelss 6405 | . . . . . 6 ⊢ ((ω ·o suc 𝐶) ∈ On → (𝐴 ∈ (ω ·o suc 𝐶) → 𝐴 ⊆ (ω ·o suc 𝐶))) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) → 𝐴 ⊆ (ω ·o suc 𝐶))) |
| 17 | 16 | adantrd 491 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵) → 𝐴 ⊆ (ω ·o suc 𝐶))) |
| 18 | 17 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) → 𝐴 ⊆ (ω ·o suc 𝐶)) |
| 19 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) → (ω ·o suc 𝐶) ⊆ 𝐵) | |
| 20 | 18, 19 | sstrd 3974 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) |
| 21 | 7, 20 | mpdan 687 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 Oncon0 6363 suc csuc 6365 (class class class)co 7413 ωcom 7869 +o coa 8485 ·o comu 8486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-oadd 8492 df-omul 8493 |
| This theorem is referenced by: oawordex3 43390 |
| Copyright terms: Public domain | W3C validator |