| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naddwordnexlem1 | Structured version Visualization version GIF version | ||
| Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, 𝐵 is equal to or larger than 𝐴. (Contributed by RP, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| naddwordnex.a | ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) |
| naddwordnex.b | ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) |
| naddwordnex.c | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| naddwordnex.d | ⊢ (𝜑 → 𝐷 ∈ On) |
| naddwordnex.m | ⊢ (𝜑 → 𝑀 ∈ ω) |
| naddwordnex.n | ⊢ (𝜑 → 𝑁 ∈ 𝑀) |
| Ref | Expression |
|---|---|
| naddwordnexlem1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naddwordnex.a | . . 3 ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) | |
| 2 | naddwordnex.b | . . 3 ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) | |
| 3 | naddwordnex.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
| 4 | naddwordnex.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ On) | |
| 5 | naddwordnex.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ω) | |
| 6 | naddwordnex.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑀) | |
| 7 | 1, 2, 3, 4, 5, 6 | naddwordnexlem0 43358 | . 2 ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) |
| 8 | omelon 9575 | . . . . . . 7 ⊢ ω ∈ On | |
| 9 | onelon 6345 | . . . . . . . . 9 ⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ 𝐷) → 𝐶 ∈ On) | |
| 10 | 4, 3, 9 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ On) |
| 11 | onsuc 7767 | . . . . . . . 8 ⊢ (𝐶 ∈ On → suc 𝐶 ∈ On) | |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → suc 𝐶 ∈ On) |
| 13 | omcl 8477 | . . . . . . 7 ⊢ ((ω ∈ On ∧ suc 𝐶 ∈ On) → (ω ·o suc 𝐶) ∈ On) | |
| 14 | 8, 12, 13 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (ω ·o suc 𝐶) ∈ On) |
| 15 | onelss 6362 | . . . . . 6 ⊢ ((ω ·o suc 𝐶) ∈ On → (𝐴 ∈ (ω ·o suc 𝐶) → 𝐴 ⊆ (ω ·o suc 𝐶))) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) → 𝐴 ⊆ (ω ·o suc 𝐶))) |
| 17 | 16 | adantrd 491 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵) → 𝐴 ⊆ (ω ·o suc 𝐶))) |
| 18 | 17 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) → 𝐴 ⊆ (ω ·o suc 𝐶)) |
| 19 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) → (ω ·o suc 𝐶) ⊆ 𝐵) | |
| 20 | 18, 19 | sstrd 3954 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) |
| 21 | 7, 20 | mpdan 687 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 Oncon0 6320 suc csuc 6322 (class class class)co 7369 ωcom 7822 +o coa 8408 ·o comu 8409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-oadd 8415 df-omul 8416 |
| This theorem is referenced by: oawordex3 43362 |
| Copyright terms: Public domain | W3C validator |