| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naddwordnexlem1 | Structured version Visualization version GIF version | ||
| Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, 𝐵 is equal to or larger than 𝐴. (Contributed by RP, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| naddwordnex.a | ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) |
| naddwordnex.b | ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) |
| naddwordnex.c | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| naddwordnex.d | ⊢ (𝜑 → 𝐷 ∈ On) |
| naddwordnex.m | ⊢ (𝜑 → 𝑀 ∈ ω) |
| naddwordnex.n | ⊢ (𝜑 → 𝑁 ∈ 𝑀) |
| Ref | Expression |
|---|---|
| naddwordnexlem1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naddwordnex.a | . . 3 ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) | |
| 2 | naddwordnex.b | . . 3 ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) | |
| 3 | naddwordnex.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
| 4 | naddwordnex.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ On) | |
| 5 | naddwordnex.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ω) | |
| 6 | naddwordnex.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑀) | |
| 7 | 1, 2, 3, 4, 5, 6 | naddwordnexlem0 43378 | . 2 ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) |
| 8 | omelon 9605 | . . . . . . 7 ⊢ ω ∈ On | |
| 9 | onelon 6359 | . . . . . . . . 9 ⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ 𝐷) → 𝐶 ∈ On) | |
| 10 | 4, 3, 9 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ On) |
| 11 | onsuc 7789 | . . . . . . . 8 ⊢ (𝐶 ∈ On → suc 𝐶 ∈ On) | |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → suc 𝐶 ∈ On) |
| 13 | omcl 8502 | . . . . . . 7 ⊢ ((ω ∈ On ∧ suc 𝐶 ∈ On) → (ω ·o suc 𝐶) ∈ On) | |
| 14 | 8, 12, 13 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (ω ·o suc 𝐶) ∈ On) |
| 15 | onelss 6376 | . . . . . 6 ⊢ ((ω ·o suc 𝐶) ∈ On → (𝐴 ∈ (ω ·o suc 𝐶) → 𝐴 ⊆ (ω ·o suc 𝐶))) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) → 𝐴 ⊆ (ω ·o suc 𝐶))) |
| 17 | 16 | adantrd 491 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵) → 𝐴 ⊆ (ω ·o suc 𝐶))) |
| 18 | 17 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) → 𝐴 ⊆ (ω ·o suc 𝐶)) |
| 19 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) → (ω ·o suc 𝐶) ⊆ 𝐵) | |
| 20 | 18, 19 | sstrd 3959 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) |
| 21 | 7, 20 | mpdan 687 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 Oncon0 6334 suc csuc 6336 (class class class)co 7389 ωcom 7844 +o coa 8433 ·o comu 8434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-inf2 9600 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-oadd 8440 df-omul 8441 |
| This theorem is referenced by: oawordex3 43382 |
| Copyright terms: Public domain | W3C validator |