![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > naddwordnexlem1 | Structured version Visualization version GIF version |
Description: When ๐ด is the sum of a limit ordinal (or zero) and a natural number and ๐ต is the sum of a larger limit ordinal and a smaller natural number, ๐ต is equal to or larger than ๐ด. (Contributed by RP, 14-Feb-2025.) |
Ref | Expression |
---|---|
naddwordnex.a | โข (๐ โ ๐ด = ((ฯ ยทo ๐ถ) +o ๐)) |
naddwordnex.b | โข (๐ โ ๐ต = ((ฯ ยทo ๐ท) +o ๐)) |
naddwordnex.c | โข (๐ โ ๐ถ โ ๐ท) |
naddwordnex.d | โข (๐ โ ๐ท โ On) |
naddwordnex.m | โข (๐ โ ๐ โ ฯ) |
naddwordnex.n | โข (๐ โ ๐ โ ๐) |
Ref | Expression |
---|---|
naddwordnexlem1 | โข (๐ โ ๐ด โ ๐ต) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddwordnex.a | . . 3 โข (๐ โ ๐ด = ((ฯ ยทo ๐ถ) +o ๐)) | |
2 | naddwordnex.b | . . 3 โข (๐ โ ๐ต = ((ฯ ยทo ๐ท) +o ๐)) | |
3 | naddwordnex.c | . . 3 โข (๐ โ ๐ถ โ ๐ท) | |
4 | naddwordnex.d | . . 3 โข (๐ โ ๐ท โ On) | |
5 | naddwordnex.m | . . 3 โข (๐ โ ๐ โ ฯ) | |
6 | naddwordnex.n | . . 3 โข (๐ โ ๐ โ ๐) | |
7 | 1, 2, 3, 4, 5, 6 | naddwordnexlem0 42749 | . 2 โข (๐ โ (๐ด โ (ฯ ยทo suc ๐ถ) โง (ฯ ยทo suc ๐ถ) โ ๐ต)) |
8 | omelon 9661 | . . . . . . 7 โข ฯ โ On | |
9 | onelon 6388 | . . . . . . . . 9 โข ((๐ท โ On โง ๐ถ โ ๐ท) โ ๐ถ โ On) | |
10 | 4, 3, 9 | syl2anc 583 | . . . . . . . 8 โข (๐ โ ๐ถ โ On) |
11 | onsuc 7808 | . . . . . . . 8 โข (๐ถ โ On โ suc ๐ถ โ On) | |
12 | 10, 11 | syl 17 | . . . . . . 7 โข (๐ โ suc ๐ถ โ On) |
13 | omcl 8550 | . . . . . . 7 โข ((ฯ โ On โง suc ๐ถ โ On) โ (ฯ ยทo suc ๐ถ) โ On) | |
14 | 8, 12, 13 | sylancr 586 | . . . . . 6 โข (๐ โ (ฯ ยทo suc ๐ถ) โ On) |
15 | onelss 6405 | . . . . . 6 โข ((ฯ ยทo suc ๐ถ) โ On โ (๐ด โ (ฯ ยทo suc ๐ถ) โ ๐ด โ (ฯ ยทo suc ๐ถ))) | |
16 | 14, 15 | syl 17 | . . . . 5 โข (๐ โ (๐ด โ (ฯ ยทo suc ๐ถ) โ ๐ด โ (ฯ ยทo suc ๐ถ))) |
17 | 16 | adantrd 491 | . . . 4 โข (๐ โ ((๐ด โ (ฯ ยทo suc ๐ถ) โง (ฯ ยทo suc ๐ถ) โ ๐ต) โ ๐ด โ (ฯ ยทo suc ๐ถ))) |
18 | 17 | imp 406 | . . 3 โข ((๐ โง (๐ด โ (ฯ ยทo suc ๐ถ) โง (ฯ ยทo suc ๐ถ) โ ๐ต)) โ ๐ด โ (ฯ ยทo suc ๐ถ)) |
19 | simprr 772 | . . 3 โข ((๐ โง (๐ด โ (ฯ ยทo suc ๐ถ) โง (ฯ ยทo suc ๐ถ) โ ๐ต)) โ (ฯ ยทo suc ๐ถ) โ ๐ต) | |
20 | 18, 19 | sstrd 3988 | . 2 โข ((๐ โง (๐ด โ (ฯ ยทo suc ๐ถ) โง (ฯ ยทo suc ๐ถ) โ ๐ต)) โ ๐ด โ ๐ต) |
21 | 7, 20 | mpdan 686 | 1 โข (๐ โ ๐ด โ ๐ต) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1534 โ wcel 2099 โ wss 3944 Oncon0 6363 suc csuc 6365 (class class class)co 7414 ฯcom 7864 +o coa 8477 ยทo comu 8478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 ax-inf2 9656 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-oadd 8484 df-omul 8485 |
This theorem is referenced by: oawordex3 42753 |
Copyright terms: Public domain | W3C validator |