| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oa0suclim | Structured version Visualization version GIF version | ||
| Description: Closed form expression of the value of ordinal addition for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.3 of [Schloeder] p. 4. See oa0 8457, oasuc 8465, and oalim 8473. (Contributed by RP, 18-Jan-2025.) |
| Ref | Expression |
|---|---|
| oa0suclim | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 +o 𝐵) = 𝐴) ∧ ((𝐵 = suc 𝐶 ∧ 𝐶 ∈ On) → (𝐴 +o 𝐵) = suc (𝐴 +o 𝐶)) ∧ (Lim 𝐵 → (𝐴 +o 𝐵) = ∪ 𝑐 ∈ 𝐵 (𝐴 +o 𝑐)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa0 8457 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
| 2 | oasuc 8465 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +o suc 𝐶) = suc (𝐴 +o 𝐶)) | |
| 3 | oalim 8473 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑐 ∈ 𝐵 (𝐴 +o 𝑐)) | |
| 4 | 3 | anassrs 467 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴 +o 𝐵) = ∪ 𝑐 ∈ 𝐵 (𝐴 +o 𝑐)) |
| 5 | 1, 2, 4 | onov0suclim 43236 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 +o 𝐵) = 𝐴) ∧ ((𝐵 = suc 𝐶 ∧ 𝐶 ∈ On) → (𝐴 +o 𝐵) = suc (𝐴 +o 𝐶)) ∧ (Lim 𝐵 → (𝐴 +o 𝐵) = ∪ 𝑐 ∈ 𝐵 (𝐴 +o 𝑐)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∅c0 4292 ∪ ciun 4951 Oncon0 6320 Lim wlim 6321 suc csuc 6322 (class class class)co 7369 +o coa 8408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |