Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  om0suclim Structured version   Visualization version   GIF version

Theorem om0suclim 42489
Description: Closed form expression of the value of ordinal multiplication for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.5 of [Schloeder] p. 4. See om0 8523, omsuc 8532, and omlim 8539. (Contributed by RP, 18-Jan-2025.)
Assertion
Ref Expression
om0suclim ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 ·o 𝐵) = ((𝐴 ·o 𝐶) +o 𝐴)) ∧ (Lim 𝐵 → (𝐴 ·o 𝐵) = 𝑐𝐵 (𝐴 ·o 𝑐))))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐
Allowed substitution hint:   𝐶(𝑐)

Proof of Theorem om0suclim
StepHypRef Expression
1 om0 8523 . 2 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2 omsuc 8532 . 2 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o suc 𝐶) = ((𝐴 ·o 𝐶) +o 𝐴))
3 omlim 8539 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = 𝑐𝐵 (𝐴 ·o 𝑐))
43anassrs 467 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴 ·o 𝐵) = 𝑐𝐵 (𝐴 ·o 𝑐))
51, 2, 4onov0suclim 42487 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 ·o 𝐵) = ((𝐴 ·o 𝐶) +o 𝐴)) ∧ (Lim 𝐵 → (𝐴 ·o 𝐵) = 𝑐𝐵 (𝐴 ·o 𝑐))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  c0 4322   ciun 4997  Oncon0 6364  Lim wlim 6365  suc csuc 6366  (class class class)co 7412   +o coa 8469   ·o comu 8470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-omul 8477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator