| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsless | Structured version Visualization version GIF version | ||
| Description: Closure of the order relation on a structure product. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| prdsbas.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
| prdsbas.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdsbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| prdsbas.b | ⊢ 𝐵 = (Base‘𝑃) |
| prdsbas.i | ⊢ (𝜑 → dom 𝑅 = 𝐼) |
| prdsle.l | ⊢ ≤ = (le‘𝑃) |
| Ref | Expression |
|---|---|
| prdsless | ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbas.p | . . 3 ⊢ 𝑃 = (𝑆Xs𝑅) | |
| 2 | prdsbas.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 3 | prdsbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 4 | prdsbas.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | prdsbas.i | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐼) | |
| 6 | prdsle.l | . . 3 ⊢ ≤ = (le‘𝑃) | |
| 7 | 1, 2, 3, 4, 5, 6 | prdsle 17478 | . 2 ⊢ (𝜑 → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
| 8 | vex 3467 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 9 | vex 3467 | . . . . . 6 ⊢ 𝑔 ∈ V | |
| 10 | 8, 9 | prss 4800 | . . . . 5 ⊢ ((𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵) |
| 11 | 10 | anbi1i 624 | . . . 4 ⊢ (((𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 12 | 11 | opabbii 5190 | . . 3 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} |
| 13 | opabssxp 5758 | . . 3 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} ⊆ (𝐵 × 𝐵) | |
| 14 | 12, 13 | eqsstrri 4011 | . 2 ⊢ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} ⊆ (𝐵 × 𝐵) |
| 15 | 7, 14 | eqsstrdi 4008 | 1 ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 {cpr 4608 class class class wbr 5123 {copab 5185 × cxp 5663 dom cdm 5665 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 lecple 17280 Xscprds 17461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17230 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-hom 17297 df-cco 17298 df-prds 17463 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |