Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem4 Structured version   Visualization version   GIF version

Theorem pellexlem4 39553
Description: Lemma for pellex 39556. Invoking irrapx1 39549, we have infinitely many near-solutions. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ)
Distinct variable group:   𝑦,𝐷,𝑧

Proof of Theorem pellexlem4
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 nnex 11620 . . . . 5 ℕ ∈ V
21, 1xpex 7452 . . . 4 (ℕ × ℕ) ∈ V
3 opabssxp 5617 . . . 4 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ⊆ (ℕ × ℕ)
4 ssdomg 8531 . . . 4 ((ℕ × ℕ) ∈ V → ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ⊆ (ℕ × ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ (ℕ × ℕ)))
52, 3, 4mp2 9 . . 3 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ (ℕ × ℕ)
6 xpnnen 15542 . . 3 (ℕ × ℕ) ≈ ℕ
7 domentr 8544 . . 3 (({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ ℕ)
85, 6, 7mp2an 690 . 2 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ ℕ
9 nnrp 12377 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
109rpsqrtcld 14749 . . . . . 6 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ+)
1110anim1i 616 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((√‘𝐷) ∈ ℝ+ ∧ ¬ (√‘𝐷) ∈ ℚ))
12 eldif 3922 . . . . 5 ((√‘𝐷) ∈ (ℝ+ ∖ ℚ) ↔ ((√‘𝐷) ∈ ℝ+ ∧ ¬ (√‘𝐷) ∈ ℚ))
1311, 12sylibr 236 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (√‘𝐷) ∈ (ℝ+ ∖ ℚ))
14 irrapx1 39549 . . . 4 ((√‘𝐷) ∈ (ℝ+ ∖ ℚ) → {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))} ≈ ℕ)
15 ensym 8534 . . . 4 ({𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))} ≈ ℕ → ℕ ≈ {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))})
1613, 14, 153syl 18 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ℕ ≈ {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))})
17 pellexlem3 39552 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
18 endomtr 8543 . . 3 ((ℕ ≈ {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))} ∧ {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
1916, 17, 18syl2anc 586 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
20 sbth 8613 . 2 (({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ ℕ ∧ ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ)
218, 19, 20sylancr 589 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2114  wne 3006  {crab 3129  Vcvv 3473  cdif 3909  wss 3912   class class class wbr 5040  {copab 5102   × cxp 5527  cfv 6329  (class class class)co 7131  cen 8482  cdom 8483  0cc0 10513  1c1 10514   + caddc 10516   · cmul 10518   < clt 10651  cmin 10846  -cneg 10847  cn 11614  2c2 11669  cq 12325  +crp 12366  cexp 13412  csqrt 14570  abscabs 14571  denomcdenom 16050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-inf2 9080  ax-cnex 10569  ax-resscn 10570  ax-1cn 10571  ax-icn 10572  ax-addcl 10573  ax-addrcl 10574  ax-mulcl 10575  ax-mulrcl 10576  ax-mulcom 10577  ax-addass 10578  ax-mulass 10579  ax-distr 10580  ax-i2m1 10581  ax-1ne0 10582  ax-1rid 10583  ax-rnegex 10584  ax-rrecex 10585  ax-cnre 10586  ax-pre-lttri 10587  ax-pre-lttrn 10588  ax-pre-ltadd 10589  ax-pre-mulgt0 10590  ax-pre-sup 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4813  df-int 4851  df-iun 4895  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-isom 6338  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-om 7557  df-1st 7665  df-2nd 7666  df-wrecs 7923  df-recs 7984  df-rdg 8022  df-1o 8078  df-oadd 8082  df-omul 8083  df-er 8265  df-map 8384  df-en 8486  df-dom 8487  df-sdom 8488  df-fin 8489  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-acn 9347  df-pnf 10653  df-mnf 10654  df-xr 10655  df-ltxr 10656  df-le 10657  df-sub 10848  df-neg 10849  df-div 11274  df-nn 11615  df-2 11677  df-3 11678  df-n0 11875  df-xnn0 11945  df-z 11959  df-uz 12221  df-q 12326  df-rp 12367  df-ico 12721  df-fz 12875  df-fl 13144  df-mod 13220  df-seq 13352  df-exp 13413  df-hash 13674  df-cj 14436  df-re 14437  df-im 14438  df-sqrt 14572  df-abs 14573  df-dvds 15586  df-gcd 15820  df-numer 16051  df-denom 16052
This theorem is referenced by:  pellexlem5  39554
  Copyright terms: Public domain W3C validator