![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankr1clem | Structured version Visualization version GIF version |
Description: Lemma for rankr1c 9812. (Contributed by NM, 6-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1clem | β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β dom π 1) β (Β¬ π΄ β (π 1βπ΅) β π΅ β (rankβπ΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankr1ag 9793 | . . 3 β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β dom π 1) β (π΄ β (π 1βπ΅) β (rankβπ΄) β π΅)) | |
2 | 1 | notbid 318 | . 2 β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β dom π 1) β (Β¬ π΄ β (π 1βπ΅) β Β¬ (rankβπ΄) β π΅)) |
3 | r1funlim 9757 | . . . . . . 7 β’ (Fun π 1 β§ Lim dom π 1) | |
4 | 3 | simpri 485 | . . . . . 6 β’ Lim dom π 1 |
5 | limord 6414 | . . . . . 6 β’ (Lim dom π 1 β Ord dom π 1) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 β’ Ord dom π 1 |
7 | ordelon 6378 | . . . . 5 β’ ((Ord dom π 1 β§ π΅ β dom π 1) β π΅ β On) | |
8 | 6, 7 | mpan 687 | . . . 4 β’ (π΅ β dom π 1 β π΅ β On) |
9 | 8 | adantl 481 | . . 3 β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β dom π 1) β π΅ β On) |
10 | rankon 9786 | . . 3 β’ (rankβπ΄) β On | |
11 | ontri1 6388 | . . 3 β’ ((π΅ β On β§ (rankβπ΄) β On) β (π΅ β (rankβπ΄) β Β¬ (rankβπ΄) β π΅)) | |
12 | 9, 10, 11 | sylancl 585 | . 2 β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β dom π 1) β (π΅ β (rankβπ΄) β Β¬ (rankβπ΄) β π΅)) |
13 | 2, 12 | bitr4d 282 | 1 β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β dom π 1) β (Β¬ π΄ β (π 1βπ΅) β π΅ β (rankβπ΄))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β wcel 2098 β wss 3940 βͺ cuni 4899 dom cdm 5666 β cima 5669 Ord word 6353 Oncon0 6354 Lim wlim 6355 Fun wfun 6527 βcfv 6533 π 1cr1 9753 rankcrnk 9754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-r1 9755 df-rank 9756 |
This theorem is referenced by: rankr1c 9812 ssrankr1 9826 |
Copyright terms: Public domain | W3C validator |