Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem6 Structured version   Visualization version   GIF version

Theorem paddasslem6 37021
Description: Lemma for paddass 37034. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
paddasslem6 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑝 (𝑠 𝑧))

Proof of Theorem paddasslem6
StepHypRef Expression
1 simpl1 1188 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝐾 ∈ HL)
2 simpl2r 1224 . . . 4 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑠𝐴)
3 simpl2l 1223 . . . 4 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑝𝐴)
4 simpl3 1190 . . . 4 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑧𝐴)
52, 3, 43jca 1125 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → (𝑠𝐴𝑝𝐴𝑧𝐴))
6 simprl 770 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑠𝑧)
71, 5, 63jca 1125 . 2 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → (𝐾 ∈ HL ∧ (𝑠𝐴𝑝𝐴𝑧𝐴) ∧ 𝑠𝑧))
8 simprr 772 . 2 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑠 (𝑝 𝑧))
9 paddasslem.l . . 3 = (le‘𝐾)
10 paddasslem.j . . 3 = (join‘𝐾)
11 paddasslem.a . . 3 𝐴 = (Atoms‘𝐾)
129, 10, 11hlatexch2 36592 . 2 ((𝐾 ∈ HL ∧ (𝑠𝐴𝑝𝐴𝑧𝐴) ∧ 𝑠𝑧) → (𝑠 (𝑝 𝑧) → 𝑝 (𝑠 𝑧)))
137, 8, 12sylc 65 1 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑝 (𝑠 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3013   class class class wbr 5047  cfv 6336  (class class class)co 7138  lecple 16561  joincjn 17543  Atomscatm 36459  HLchlt 36546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-proset 17527  df-poset 17545  df-plt 17557  df-lub 17573  df-glb 17574  df-join 17575  df-meet 17576  df-p0 17638  df-lat 17645  df-covers 36462  df-ats 36463  df-atl 36494  df-cvlat 36518  df-hlat 36547
This theorem is referenced by:  paddasslem7  37022
  Copyright terms: Public domain W3C validator