Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem6 Structured version   Visualization version   GIF version

Theorem paddasslem6 37808
Description: Lemma for paddass 37821. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
paddasslem6 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑝 (𝑠 𝑧))

Proof of Theorem paddasslem6
StepHypRef Expression
1 simpl1 1189 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝐾 ∈ HL)
2 simpl2r 1225 . . . 4 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑠𝐴)
3 simpl2l 1224 . . . 4 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑝𝐴)
4 simpl3 1191 . . . 4 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑧𝐴)
52, 3, 43jca 1126 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → (𝑠𝐴𝑝𝐴𝑧𝐴))
6 simprl 767 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑠𝑧)
71, 5, 63jca 1126 . 2 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → (𝐾 ∈ HL ∧ (𝑠𝐴𝑝𝐴𝑧𝐴) ∧ 𝑠𝑧))
8 simprr 769 . 2 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑠 (𝑝 𝑧))
9 paddasslem.l . . 3 = (le‘𝐾)
10 paddasslem.j . . 3 = (join‘𝐾)
11 paddasslem.a . . 3 𝐴 = (Atoms‘𝐾)
129, 10, 11hlatexch2 37379 . 2 ((𝐾 ∈ HL ∧ (𝑠𝐴𝑝𝐴𝑧𝐴) ∧ 𝑠𝑧) → (𝑠 (𝑝 𝑧) → 𝑝 (𝑠 𝑧)))
137, 8, 12sylc 65 1 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑝 (𝑠 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2107  wne 2941   class class class wbr 5075  cfv 6423  (class class class)co 7260  lecple 16913  joincjn 17973  Atomscatm 37246  HLchlt 37333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431  df-riota 7217  df-ov 7263  df-oprab 7264  df-proset 17957  df-poset 17975  df-plt 17992  df-lub 18008  df-glb 18009  df-join 18010  df-meet 18011  df-p0 18087  df-lat 18094  df-covers 37249  df-ats 37250  df-atl 37281  df-cvlat 37305  df-hlat 37334
This theorem is referenced by:  paddasslem7  37809
  Copyright terms: Public domain W3C validator