![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddasslem6 | Structured version Visualization version GIF version |
Description: Lemma for paddass 35858. (Contributed by NM, 8-Jan-2012.) |
Ref | Expression |
---|---|
paddasslem.l | ⊢ ≤ = (le‘𝐾) |
paddasslem.j | ⊢ ∨ = (join‘𝐾) |
paddasslem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
paddasslem6 | ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ≤ (𝑠 ∨ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1243 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝐾 ∈ HL) | |
2 | simpl2r 1300 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑠 ∈ 𝐴) | |
3 | simpl2l 1298 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ∈ 𝐴) | |
4 | simpl3 1247 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑧 ∈ 𝐴) | |
5 | 2, 3, 4 | 3jca 1159 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → (𝑠 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
6 | simprl 788 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑠 ≠ 𝑧) | |
7 | 1, 5, 6 | 3jca 1159 | . 2 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → (𝐾 ∈ HL ∧ (𝑠 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ≠ 𝑧)) |
8 | simprr 790 | . 2 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑠 ≤ (𝑝 ∨ 𝑧)) | |
9 | paddasslem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
10 | paddasslem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
11 | paddasslem.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
12 | 9, 10, 11 | hlatexch2 35416 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑠 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ≠ 𝑧) → (𝑠 ≤ (𝑝 ∨ 𝑧) → 𝑝 ≤ (𝑠 ∨ 𝑧))) |
13 | 7, 8, 12 | sylc 65 | 1 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ≤ (𝑠 ∨ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 class class class wbr 4844 ‘cfv 6102 (class class class)co 6879 lecple 16273 joincjn 17258 Atomscatm 35283 HLchlt 35370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-proset 17242 df-poset 17260 df-plt 17272 df-lub 17288 df-glb 17289 df-join 17290 df-meet 17291 df-p0 17353 df-lat 17360 df-covers 35286 df-ats 35287 df-atl 35318 df-cvlat 35342 df-hlat 35371 |
This theorem is referenced by: paddasslem7 35846 |
Copyright terms: Public domain | W3C validator |