Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddasslem6 | Structured version Visualization version GIF version |
Description: Lemma for paddass 37894. (Contributed by NM, 8-Jan-2012.) |
Ref | Expression |
---|---|
paddasslem.l | ⊢ ≤ = (le‘𝐾) |
paddasslem.j | ⊢ ∨ = (join‘𝐾) |
paddasslem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
paddasslem6 | ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ≤ (𝑠 ∨ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝐾 ∈ HL) | |
2 | simpl2r 1227 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑠 ∈ 𝐴) | |
3 | simpl2l 1226 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ∈ 𝐴) | |
4 | simpl3 1193 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑧 ∈ 𝐴) | |
5 | 2, 3, 4 | 3jca 1128 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → (𝑠 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
6 | simprl 769 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑠 ≠ 𝑧) | |
7 | 1, 5, 6 | 3jca 1128 | . 2 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → (𝐾 ∈ HL ∧ (𝑠 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ≠ 𝑧)) |
8 | simprr 771 | . 2 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑠 ≤ (𝑝 ∨ 𝑧)) | |
9 | paddasslem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
10 | paddasslem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
11 | paddasslem.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
12 | 9, 10, 11 | hlatexch2 37452 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑠 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ≠ 𝑧) → (𝑠 ≤ (𝑝 ∨ 𝑧) → 𝑝 ≤ (𝑠 ∨ 𝑧))) |
13 | 7, 8, 12 | sylc 65 | 1 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ≤ (𝑠 ∨ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 lecple 17014 joincjn 18074 Atomscatm 37319 HLchlt 37406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-proset 18058 df-poset 18076 df-plt 18093 df-lub 18109 df-glb 18110 df-join 18111 df-meet 18112 df-p0 18188 df-lat 18195 df-covers 37322 df-ats 37323 df-atl 37354 df-cvlat 37378 df-hlat 37407 |
This theorem is referenced by: paddasslem7 37882 |
Copyright terms: Public domain | W3C validator |