Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddasslem6 | Structured version Visualization version GIF version |
Description: Lemma for paddass 37821. (Contributed by NM, 8-Jan-2012.) |
Ref | Expression |
---|---|
paddasslem.l | ⊢ ≤ = (le‘𝐾) |
paddasslem.j | ⊢ ∨ = (join‘𝐾) |
paddasslem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
paddasslem6 | ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ≤ (𝑠 ∨ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝐾 ∈ HL) | |
2 | simpl2r 1225 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑠 ∈ 𝐴) | |
3 | simpl2l 1224 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ∈ 𝐴) | |
4 | simpl3 1191 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑧 ∈ 𝐴) | |
5 | 2, 3, 4 | 3jca 1126 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → (𝑠 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
6 | simprl 767 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑠 ≠ 𝑧) | |
7 | 1, 5, 6 | 3jca 1126 | . 2 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → (𝐾 ∈ HL ∧ (𝑠 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ≠ 𝑧)) |
8 | simprr 769 | . 2 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑠 ≤ (𝑝 ∨ 𝑧)) | |
9 | paddasslem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
10 | paddasslem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
11 | paddasslem.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
12 | 9, 10, 11 | hlatexch2 37379 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑠 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ≠ 𝑧) → (𝑠 ≤ (𝑝 ∨ 𝑧) → 𝑝 ≤ (𝑠 ∨ 𝑧))) |
13 | 7, 8, 12 | sylc 65 | 1 ⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ (𝑠 ≠ 𝑧 ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) → 𝑝 ≤ (𝑠 ∨ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2107 ≠ wne 2941 class class class wbr 5075 ‘cfv 6423 (class class class)co 7260 lecple 16913 joincjn 17973 Atomscatm 37246 HLchlt 37333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-proset 17957 df-poset 17975 df-plt 17992 df-lub 18008 df-glb 18009 df-join 18010 df-meet 18011 df-p0 18087 df-lat 18094 df-covers 37249 df-ats 37250 df-atl 37281 df-cvlat 37305 df-hlat 37334 |
This theorem is referenced by: paddasslem7 37809 |
Copyright terms: Public domain | W3C validator |