MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcocn Structured version   Visualization version   GIF version

Theorem pcocn 24915
Description: The concatenation of two paths is a path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
Assertion
Ref Expression
pcocn (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))

Proof of Theorem pcocn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2pcoval 24909 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
4 iitopon 24770 . . . 4 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
65cnmptid 23546 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
7 0elunit 13372 . . . . 5 0 ∈ (0[,]1)
87a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]1))
95, 5, 8cnmptc 23547 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
10 eqid 2729 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
11 eqid 2729 . . . 4 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
12 eqid 2729 . . . 4 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
13 dfii2 24773 . . . 4 II = ((topGen‘ran (,)) ↾t (0[,]1))
14 0re 11117 . . . . 5 0 ∈ ℝ
1514a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ)
16 1re 11115 . . . . 5 1 ∈ ℝ
1716a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ)
18 halfre 12337 . . . . . 6 (1 / 2) ∈ ℝ
19 halfge0 12340 . . . . . 6 0 ≤ (1 / 2)
20 halflt1 12341 . . . . . . 7 (1 / 2) < 1
2118, 16, 20ltleii 11239 . . . . . 6 (1 / 2) ≤ 1
22 elicc01 13369 . . . . . 6 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
2318, 19, 21, 22mpbir3an 1342 . . . . 5 (1 / 2) ∈ (0[,]1)
2423a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ (0[,]1))
25 pcoval2.4 . . . . . 6 (𝜑 → (𝐹‘1) = (𝐺‘0))
2625adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0))
27 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
2827oveq2d 7365 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
29 2cn 12203 . . . . . . . 8 2 ∈ ℂ
30 2ne0 12232 . . . . . . . 8 2 ≠ 0
3129, 30recidi 11855 . . . . . . 7 (2 · (1 / 2)) = 1
3228, 31eqtrdi 2780 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
3332fveq2d 6826 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘(2 · 𝑦)) = (𝐹‘1))
3432oveq1d 7364 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = (1 − 1))
35 1m1e0 12200 . . . . . . 7 (1 − 1) = 0
3634, 35eqtrdi 2780 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = 0)
3736fveq2d 6826 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐺‘((2 · 𝑦) − 1)) = (𝐺‘0))
3826, 33, 373eqtr4d 2774 . . . 4 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘(2 · 𝑦)) = (𝐺‘((2 · 𝑦) − 1)))
39 retopon 24649 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
40 iccssre 13332 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
4114, 18, 40mp2an 692 . . . . . . 7 (0[,](1 / 2)) ⊆ ℝ
42 resttopon 23046 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
4339, 41, 42mp2an 692 . . . . . 6 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
4443a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
4544, 5cnmpt1st 23553 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
4611iihalf1cn 24824 . . . . . . 7 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
4746a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
48 oveq2 7357 . . . . . 6 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
4944, 5, 45, 44, 47, 48cnmpt21 23556 . . . . 5 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
5044, 5, 49, 1cnmpt21f 23557 . . . 4 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (𝐹‘(2 · 𝑦))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn 𝐽))
51 iccssre 13332 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
5218, 16, 51mp2an 692 . . . . . . 7 ((1 / 2)[,]1) ⊆ ℝ
53 resttopon 23046 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
5439, 52, 53mp2an 692 . . . . . 6 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
5554a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
5655, 5cnmpt1st 23553 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
5712iihalf2cn 24827 . . . . . . 7 (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
5857a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
5948oveq1d 7364 . . . . . 6 (𝑥 = 𝑦 → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1))
6055, 5, 56, 55, 58, 59cnmpt21 23556 . . . . 5 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
6155, 5, 60, 2cnmpt21f 23557 . . . 4 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ (𝐺‘((2 · 𝑦) − 1))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽))
6210, 11, 12, 13, 15, 17, 24, 5, 38, 50, 61cnmpopc 24820 . . 3 (𝜑 → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1)))) ∈ ((II ×t II) Cn 𝐽))
63 breq1 5095 . . . . 5 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
64 oveq2 7357 . . . . . 6 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
6564fveq2d 6826 . . . . 5 (𝑦 = 𝑥 → (𝐹‘(2 · 𝑦)) = (𝐹‘(2 · 𝑥)))
6664oveq1d 7364 . . . . . 6 (𝑦 = 𝑥 → ((2 · 𝑦) − 1) = ((2 · 𝑥) − 1))
6766fveq2d 6826 . . . . 5 (𝑦 = 𝑥 → (𝐺‘((2 · 𝑦) − 1)) = (𝐺‘((2 · 𝑥) − 1)))
6863, 65, 67ifbieq12d 4505 . . . 4 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
6968adantr 480 . . 3 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
705, 6, 9, 5, 5, 62, 69cnmpt12 23552 . 2 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ (II Cn 𝐽))
713, 70eqeltrd 2828 1 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903  ifcif 4476   class class class wbr 5092  cmpt 5173  ran crn 5620  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  cle 11150  cmin 11347   / cdiv 11777  2c2 12183  (,)cioo 13248  [,]cicc 13251  t crest 17324  topGenctg 17341  TopOnctopon 22795   Cn ccn 23109  IIcii 24766  *𝑝cpco 24898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-ii 24768  df-pco 24903
This theorem is referenced by:  copco  24916  pcohtpylem  24917  pcohtpy  24918  pcoass  24922  pcorevlem  24924  om1addcl  24931  pi1xfrf  24951  pi1xfr  24953  pi1xfrcnvlem  24954  pi1coghm  24959  connpconn  35218  sconnpht2  35221  cvmlift3lem6  35307
  Copyright terms: Public domain W3C validator