MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcocn Structured version   Visualization version   GIF version

Theorem pcocn 23615
Description: The concatenation of two paths is a path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
Assertion
Ref Expression
pcocn (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))

Proof of Theorem pcocn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2pcoval 23609 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
4 iitopon 23481 . . . 4 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
65cnmptid 22263 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
7 0elunit 12849 . . . . 5 0 ∈ (0[,]1)
87a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]1))
95, 5, 8cnmptc 22264 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
10 eqid 2821 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
11 eqid 2821 . . . 4 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
12 eqid 2821 . . . 4 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
13 dfii2 23484 . . . 4 II = ((topGen‘ran (,)) ↾t (0[,]1))
14 0re 10637 . . . . 5 0 ∈ ℝ
1514a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ)
16 1re 10635 . . . . 5 1 ∈ ℝ
1716a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ)
18 halfre 11845 . . . . . 6 (1 / 2) ∈ ℝ
19 halfge0 11848 . . . . . 6 0 ≤ (1 / 2)
20 halflt1 11849 . . . . . . 7 (1 / 2) < 1
2118, 16, 20ltleii 10757 . . . . . 6 (1 / 2) ≤ 1
22 elicc01 12848 . . . . . 6 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
2318, 19, 21, 22mpbir3an 1337 . . . . 5 (1 / 2) ∈ (0[,]1)
2423a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ (0[,]1))
25 pcoval2.4 . . . . . 6 (𝜑 → (𝐹‘1) = (𝐺‘0))
2625adantr 483 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0))
27 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
2827oveq2d 7166 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
29 2cn 11706 . . . . . . . 8 2 ∈ ℂ
30 2ne0 11735 . . . . . . . 8 2 ≠ 0
3129, 30recidi 11365 . . . . . . 7 (2 · (1 / 2)) = 1
3228, 31syl6eq 2872 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
3332fveq2d 6669 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘(2 · 𝑦)) = (𝐹‘1))
3432oveq1d 7165 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = (1 − 1))
35 1m1e0 11703 . . . . . . 7 (1 − 1) = 0
3634, 35syl6eq 2872 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = 0)
3736fveq2d 6669 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐺‘((2 · 𝑦) − 1)) = (𝐺‘0))
3826, 33, 373eqtr4d 2866 . . . 4 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘(2 · 𝑦)) = (𝐺‘((2 · 𝑦) − 1)))
39 retopon 23366 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
40 iccssre 12812 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
4114, 18, 40mp2an 690 . . . . . . 7 (0[,](1 / 2)) ⊆ ℝ
42 resttopon 21763 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
4339, 41, 42mp2an 690 . . . . . 6 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
4443a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
4544, 5cnmpt1st 22270 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
4611iihalf1cn 23530 . . . . . . 7 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
4746a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
48 oveq2 7158 . . . . . 6 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
4944, 5, 45, 44, 47, 48cnmpt21 22273 . . . . 5 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
5044, 5, 49, 1cnmpt21f 22274 . . . 4 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (𝐹‘(2 · 𝑦))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn 𝐽))
51 iccssre 12812 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
5218, 16, 51mp2an 690 . . . . . . 7 ((1 / 2)[,]1) ⊆ ℝ
53 resttopon 21763 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
5439, 52, 53mp2an 690 . . . . . 6 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
5554a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
5655, 5cnmpt1st 22270 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
5712iihalf2cn 23532 . . . . . . 7 (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
5857a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
5948oveq1d 7165 . . . . . 6 (𝑥 = 𝑦 → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1))
6055, 5, 56, 55, 58, 59cnmpt21 22273 . . . . 5 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
6155, 5, 60, 2cnmpt21f 22274 . . . 4 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ (𝐺‘((2 · 𝑦) − 1))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽))
6210, 11, 12, 13, 15, 17, 24, 5, 38, 50, 61cnmpopc 23526 . . 3 (𝜑 → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1)))) ∈ ((II ×t II) Cn 𝐽))
63 breq1 5062 . . . . 5 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
64 oveq2 7158 . . . . . 6 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
6564fveq2d 6669 . . . . 5 (𝑦 = 𝑥 → (𝐹‘(2 · 𝑦)) = (𝐹‘(2 · 𝑥)))
6664oveq1d 7165 . . . . . 6 (𝑦 = 𝑥 → ((2 · 𝑦) − 1) = ((2 · 𝑥) − 1))
6766fveq2d 6669 . . . . 5 (𝑦 = 𝑥 → (𝐺‘((2 · 𝑦) − 1)) = (𝐺‘((2 · 𝑥) − 1)))
6863, 65, 67ifbieq12d 4494 . . . 4 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
6968adantr 483 . . 3 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
705, 6, 9, 5, 5, 62, 69cnmpt12 22269 . 2 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ (II Cn 𝐽))
713, 70eqeltrd 2913 1 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wss 3936  ifcif 4467   class class class wbr 5059  cmpt 5139  ran crn 5551  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   · cmul 10536  cle 10670  cmin 10864   / cdiv 11291  2c2 11686  (,)cioo 12732  [,]cicc 12735  t crest 16688  topGenctg 16705  TopOnctopon 21512   Cn ccn 21826  IIcii 23477  *𝑝cpco 23598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-cn 21829  df-cnp 21830  df-tx 22164  df-hmeo 22357  df-xms 22924  df-ms 22925  df-tms 22926  df-ii 23479  df-pco 23603
This theorem is referenced by:  copco  23616  pcohtpylem  23617  pcohtpy  23618  pcoass  23622  pcorevlem  23624  om1addcl  23631  pi1xfrf  23651  pi1xfr  23653  pi1xfrcnvlem  23654  pi1coghm  23659  connpconn  32477  sconnpht2  32480  cvmlift3lem6  32566
  Copyright terms: Public domain W3C validator