Step | Hyp | Ref
| Expression |
1 | | pcoval.2 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
2 | | pcoval.3 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
3 | 1, 2 | pcoval 24080 |
. 2
⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
4 | | iitopon 23948 |
. . . 4
⊢ II ∈
(TopOn‘(0[,]1)) |
5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → II ∈
(TopOn‘(0[,]1))) |
6 | 5 | cnmptid 22720 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II)) |
7 | | 0elunit 13130 |
. . . . 5
⊢ 0 ∈
(0[,]1) |
8 | 7 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈
(0[,]1)) |
9 | 5, 5, 8 | cnmptc 22721 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn
II)) |
10 | | eqid 2738 |
. . . 4
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
11 | | eqid 2738 |
. . . 4
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) =
((topGen‘ran (,)) ↾t (0[,](1 / 2))) |
12 | | eqid 2738 |
. . . 4
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) =
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) |
13 | | dfii2 23951 |
. . . 4
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
14 | | 0re 10908 |
. . . . 5
⊢ 0 ∈
ℝ |
15 | 14 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈
ℝ) |
16 | | 1re 10906 |
. . . . 5
⊢ 1 ∈
ℝ |
17 | 16 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
18 | | halfre 12117 |
. . . . . 6
⊢ (1 / 2)
∈ ℝ |
19 | | halfge0 12120 |
. . . . . 6
⊢ 0 ≤ (1
/ 2) |
20 | | halflt1 12121 |
. . . . . . 7
⊢ (1 / 2)
< 1 |
21 | 18, 16, 20 | ltleii 11028 |
. . . . . 6
⊢ (1 / 2)
≤ 1 |
22 | | elicc01 13127 |
. . . . . 6
⊢ ((1 / 2)
∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 /
2) ≤ 1)) |
23 | 18, 19, 21, 22 | mpbir3an 1339 |
. . . . 5
⊢ (1 / 2)
∈ (0[,]1) |
24 | 23 | a1i 11 |
. . . 4
⊢ (𝜑 → (1 / 2) ∈
(0[,]1)) |
25 | | pcoval2.4 |
. . . . . 6
⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) |
26 | 25 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0)) |
27 | | simprl 767 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2)) |
28 | 27 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 /
2))) |
29 | | 2cn 11978 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
30 | | 2ne0 12007 |
. . . . . . . 8
⊢ 2 ≠
0 |
31 | 29, 30 | recidi 11636 |
. . . . . . 7
⊢ (2
· (1 / 2)) = 1 |
32 | 28, 31 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1) |
33 | 32 | fveq2d 6760 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘(2 · 𝑦)) = (𝐹‘1)) |
34 | 32 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = (1 −
1)) |
35 | | 1m1e0 11975 |
. . . . . . 7
⊢ (1
− 1) = 0 |
36 | 34, 35 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) =
0) |
37 | 36 | fveq2d 6760 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐺‘((2 · 𝑦) − 1)) = (𝐺‘0)) |
38 | 26, 33, 37 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘(2 · 𝑦)) = (𝐺‘((2 · 𝑦) − 1))) |
39 | | retopon 23833 |
. . . . . . 7
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
40 | | iccssre 13090 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆
ℝ) |
41 | 14, 18, 40 | mp2an 688 |
. . . . . . 7
⊢ (0[,](1 /
2)) ⊆ ℝ |
42 | | resttopon 22220 |
. . . . . . 7
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 /
2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1
/ 2))) ∈ (TopOn‘(0[,](1 / 2)))) |
43 | 39, 41, 42 | mp2an 688 |
. . . . . 6
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈
(TopOn‘(0[,](1 / 2))) |
44 | 43 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((topGen‘ran (,))
↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 /
2)))) |
45 | 44, 5 | cnmpt1st 22727 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t II) Cn
((topGen‘ran (,)) ↾t (0[,](1 / 2))))) |
46 | 11 | iihalf1cn 24001 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,](1 / 2)) ↦ (2
· 𝑥)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II) |
47 | 46 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 ·
𝑥)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II)) |
48 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦)) |
49 | 44, 5, 45, 44, 47, 48 | cnmpt21 22730 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran
(,)) ↾t (0[,](1 / 2))) ×t II) Cn
II)) |
50 | 44, 5, 49, 1 | cnmpt21f 22731 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (𝐹‘(2 · 𝑦))) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t II) Cn 𝐽)) |
51 | | iccssre 13090 |
. . . . . . . 8
⊢ (((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆
ℝ) |
52 | 18, 16, 51 | mp2an 688 |
. . . . . . 7
⊢ ((1 /
2)[,]1) ⊆ ℝ |
53 | | resttopon 22220 |
. . . . . . 7
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 /
2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1
/ 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))) |
54 | 39, 52, 53 | mp2an 688 |
. . . . . 6
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈
(TopOn‘((1 / 2)[,]1)) |
55 | 54 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 /
2)[,]1))) |
56 | 55, 5 | cnmpt1st 22727 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ×t II) Cn
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)))) |
57 | 12 | iihalf2cn 24003 |
. . . . . . 7
⊢ (𝑥 ∈ ((1 / 2)[,]1) ↦
((2 · 𝑥) − 1))
∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn
II) |
58 | 57 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 ·
𝑥) − 1)) ∈
(((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn
II)) |
59 | 48 | oveq1d 7270 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) |
60 | 55, 5, 56, 55, 58, 59 | cnmpt21 22730 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((2 · 𝑦) − 1)) ∈
((((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
×t II) Cn II)) |
61 | 55, 5, 60, 2 | cnmpt21f 22731 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ (𝐺‘((2 · 𝑦) − 1))) ∈ ((((topGen‘ran
(,)) ↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽)) |
62 | 10, 11, 12, 13, 15, 17, 24, 5, 38, 50, 61 | cnmpopc 23997 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1)))) ∈ ((II
×t II) Cn 𝐽)) |
63 | | breq1 5073 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2))) |
64 | | oveq2 7263 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥)) |
65 | 64 | fveq2d 6760 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝐹‘(2 · 𝑦)) = (𝐹‘(2 · 𝑥))) |
66 | 64 | oveq1d 7270 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((2 · 𝑦) − 1) = ((2 · 𝑥) − 1)) |
67 | 66 | fveq2d 6760 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝐺‘((2 · 𝑦) − 1)) = (𝐺‘((2 · 𝑥) − 1))) |
68 | 63, 65, 67 | ifbieq12d 4484 |
. . . 4
⊢ (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) |
69 | 68 | adantr 480 |
. . 3
⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 0) → if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) |
70 | 5, 6, 9, 5, 5, 62,
69 | cnmpt12 22726 |
. 2
⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ (II Cn 𝐽)) |
71 | 3, 70 | eqeltrd 2839 |
1
⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) ∈ (II Cn 𝐽)) |