Step | Hyp | Ref
| Expression |
1 | | pcoval.2 |
. . 3
β’ (π β πΉ β (II Cn π½)) |
2 | | pcoval.3 |
. . 3
β’ (π β πΊ β (II Cn π½)) |
3 | 1, 2 | pcoval 24526 |
. 2
β’ (π β (πΉ(*πβπ½)πΊ) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πΊβ((2 Β· π₯) β 1))))) |
4 | | iitopon 24394 |
. . . 4
β’ II β
(TopOnβ(0[,]1)) |
5 | 4 | a1i 11 |
. . 3
β’ (π β II β
(TopOnβ(0[,]1))) |
6 | 5 | cnmptid 23164 |
. . 3
β’ (π β (π₯ β (0[,]1) β¦ π₯) β (II Cn II)) |
7 | | 0elunit 13445 |
. . . . 5
β’ 0 β
(0[,]1) |
8 | 7 | a1i 11 |
. . . 4
β’ (π β 0 β
(0[,]1)) |
9 | 5, 5, 8 | cnmptc 23165 |
. . 3
β’ (π β (π₯ β (0[,]1) β¦ 0) β (II Cn
II)) |
10 | | eqid 2732 |
. . . 4
β’
(topGenβran (,)) = (topGenβran (,)) |
11 | | eqid 2732 |
. . . 4
β’
((topGenβran (,)) βΎt (0[,](1 / 2))) =
((topGenβran (,)) βΎt (0[,](1 / 2))) |
12 | | eqid 2732 |
. . . 4
β’
((topGenβran (,)) βΎt ((1 / 2)[,]1)) =
((topGenβran (,)) βΎt ((1 / 2)[,]1)) |
13 | | dfii2 24397 |
. . . 4
β’ II =
((topGenβran (,)) βΎt (0[,]1)) |
14 | | 0re 11215 |
. . . . 5
β’ 0 β
β |
15 | 14 | a1i 11 |
. . . 4
β’ (π β 0 β
β) |
16 | | 1re 11213 |
. . . . 5
β’ 1 β
β |
17 | 16 | a1i 11 |
. . . 4
β’ (π β 1 β
β) |
18 | | halfre 12425 |
. . . . . 6
β’ (1 / 2)
β β |
19 | | halfge0 12428 |
. . . . . 6
β’ 0 β€ (1
/ 2) |
20 | | halflt1 12429 |
. . . . . . 7
β’ (1 / 2)
< 1 |
21 | 18, 16, 20 | ltleii 11336 |
. . . . . 6
β’ (1 / 2)
β€ 1 |
22 | | elicc01 13442 |
. . . . . 6
β’ ((1 / 2)
β (0[,]1) β ((1 / 2) β β β§ 0 β€ (1 / 2) β§ (1 /
2) β€ 1)) |
23 | 18, 19, 21, 22 | mpbir3an 1341 |
. . . . 5
β’ (1 / 2)
β (0[,]1) |
24 | 23 | a1i 11 |
. . . 4
β’ (π β (1 / 2) β
(0[,]1)) |
25 | | pcoval2.4 |
. . . . . 6
β’ (π β (πΉβ1) = (πΊβ0)) |
26 | 25 | adantr 481 |
. . . . 5
β’ ((π β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β (πΉβ1) = (πΊβ0)) |
27 | | simprl 769 |
. . . . . . . 8
β’ ((π β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β π¦ = (1 / 2)) |
28 | 27 | oveq2d 7424 |
. . . . . . 7
β’ ((π β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β (2 Β· π¦) = (2 Β· (1 /
2))) |
29 | | 2cn 12286 |
. . . . . . . 8
β’ 2 β
β |
30 | | 2ne0 12315 |
. . . . . . . 8
β’ 2 β
0 |
31 | 29, 30 | recidi 11944 |
. . . . . . 7
β’ (2
Β· (1 / 2)) = 1 |
32 | 28, 31 | eqtrdi 2788 |
. . . . . 6
β’ ((π β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β (2 Β· π¦) = 1) |
33 | 32 | fveq2d 6895 |
. . . . 5
β’ ((π β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β (πΉβ(2 Β· π¦)) = (πΉβ1)) |
34 | 32 | oveq1d 7423 |
. . . . . . 7
β’ ((π β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β ((2 Β· π¦) β 1) = (1 β
1)) |
35 | | 1m1e0 12283 |
. . . . . . 7
β’ (1
β 1) = 0 |
36 | 34, 35 | eqtrdi 2788 |
. . . . . 6
β’ ((π β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β ((2 Β· π¦) β 1) =
0) |
37 | 36 | fveq2d 6895 |
. . . . 5
β’ ((π β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β (πΊβ((2 Β· π¦) β 1)) = (πΊβ0)) |
38 | 26, 33, 37 | 3eqtr4d 2782 |
. . . 4
β’ ((π β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β (πΉβ(2 Β· π¦)) = (πΊβ((2 Β· π¦) β 1))) |
39 | | retopon 24279 |
. . . . . . 7
β’
(topGenβran (,)) β (TopOnββ) |
40 | | iccssre 13405 |
. . . . . . . 8
β’ ((0
β β β§ (1 / 2) β β) β (0[,](1 / 2)) β
β) |
41 | 14, 18, 40 | mp2an 690 |
. . . . . . 7
β’ (0[,](1 /
2)) β β |
42 | | resttopon 22664 |
. . . . . . 7
β’
(((topGenβran (,)) β (TopOnββ) β§ (0[,](1 /
2)) β β) β ((topGenβran (,)) βΎt (0[,](1
/ 2))) β (TopOnβ(0[,](1 / 2)))) |
43 | 39, 41, 42 | mp2an 690 |
. . . . . 6
β’
((topGenβran (,)) βΎt (0[,](1 / 2))) β
(TopOnβ(0[,](1 / 2))) |
44 | 43 | a1i 11 |
. . . . 5
β’ (π β ((topGenβran (,))
βΎt (0[,](1 / 2))) β (TopOnβ(0[,](1 /
2)))) |
45 | 44, 5 | cnmpt1st 23171 |
. . . . . 6
β’ (π β (π¦ β (0[,](1 / 2)), π§ β (0[,]1) β¦ π¦) β ((((topGenβran (,))
βΎt (0[,](1 / 2))) Γt II) Cn
((topGenβran (,)) βΎt (0[,](1 / 2))))) |
46 | 11 | iihalf1cn 24447 |
. . . . . . 7
β’ (π₯ β (0[,](1 / 2)) β¦ (2
Β· π₯)) β
(((topGenβran (,)) βΎt (0[,](1 / 2))) Cn
II) |
47 | 46 | a1i 11 |
. . . . . 6
β’ (π β (π₯ β (0[,](1 / 2)) β¦ (2 Β·
π₯)) β
(((topGenβran (,)) βΎt (0[,](1 / 2))) Cn
II)) |
48 | | oveq2 7416 |
. . . . . 6
β’ (π₯ = π¦ β (2 Β· π₯) = (2 Β· π¦)) |
49 | 44, 5, 45, 44, 47, 48 | cnmpt21 23174 |
. . . . 5
β’ (π β (π¦ β (0[,](1 / 2)), π§ β (0[,]1) β¦ (2 Β· π¦)) β ((((topGenβran
(,)) βΎt (0[,](1 / 2))) Γt II) Cn
II)) |
50 | 44, 5, 49, 1 | cnmpt21f 23175 |
. . . 4
β’ (π β (π¦ β (0[,](1 / 2)), π§ β (0[,]1) β¦ (πΉβ(2 Β· π¦))) β ((((topGenβran (,))
βΎt (0[,](1 / 2))) Γt II) Cn π½)) |
51 | | iccssre 13405 |
. . . . . . . 8
β’ (((1 / 2)
β β β§ 1 β β) β ((1 / 2)[,]1) β
β) |
52 | 18, 16, 51 | mp2an 690 |
. . . . . . 7
β’ ((1 /
2)[,]1) β β |
53 | | resttopon 22664 |
. . . . . . 7
β’
(((topGenβran (,)) β (TopOnββ) β§ ((1 /
2)[,]1) β β) β ((topGenβran (,)) βΎt ((1
/ 2)[,]1)) β (TopOnβ((1 / 2)[,]1))) |
54 | 39, 52, 53 | mp2an 690 |
. . . . . 6
β’
((topGenβran (,)) βΎt ((1 / 2)[,]1)) β
(TopOnβ((1 / 2)[,]1)) |
55 | 54 | a1i 11 |
. . . . 5
β’ (π β ((topGenβran (,))
βΎt ((1 / 2)[,]1)) β (TopOnβ((1 /
2)[,]1))) |
56 | 55, 5 | cnmpt1st 23171 |
. . . . . 6
β’ (π β (π¦ β ((1 / 2)[,]1), π§ β (0[,]1) β¦ π¦) β ((((topGenβran (,))
βΎt ((1 / 2)[,]1)) Γt II) Cn
((topGenβran (,)) βΎt ((1 / 2)[,]1)))) |
57 | 12 | iihalf2cn 24449 |
. . . . . . 7
β’ (π₯ β ((1 / 2)[,]1) β¦
((2 Β· π₯) β 1))
β (((topGenβran (,)) βΎt ((1 / 2)[,]1)) Cn
II) |
58 | 57 | a1i 11 |
. . . . . 6
β’ (π β (π₯ β ((1 / 2)[,]1) β¦ ((2 Β·
π₯) β 1)) β
(((topGenβran (,)) βΎt ((1 / 2)[,]1)) Cn
II)) |
59 | 48 | oveq1d 7423 |
. . . . . 6
β’ (π₯ = π¦ β ((2 Β· π₯) β 1) = ((2 Β· π¦) β 1)) |
60 | 55, 5, 56, 55, 58, 59 | cnmpt21 23174 |
. . . . 5
β’ (π β (π¦ β ((1 / 2)[,]1), π§ β (0[,]1) β¦ ((2 Β· π¦) β 1)) β
((((topGenβran (,)) βΎt ((1 / 2)[,]1))
Γt II) Cn II)) |
61 | 55, 5, 60, 2 | cnmpt21f 23175 |
. . . 4
β’ (π β (π¦ β ((1 / 2)[,]1), π§ β (0[,]1) β¦ (πΊβ((2 Β· π¦) β 1))) β ((((topGenβran
(,)) βΎt ((1 / 2)[,]1)) Γt II) Cn π½)) |
62 | 10, 11, 12, 13, 15, 17, 24, 5, 38, 50, 61 | cnmpopc 24443 |
. . 3
β’ (π β (π¦ β (0[,]1), π§ β (0[,]1) β¦ if(π¦ β€ (1 / 2), (πΉβ(2 Β· π¦)), (πΊβ((2 Β· π¦) β 1)))) β ((II
Γt II) Cn π½)) |
63 | | breq1 5151 |
. . . . 5
β’ (π¦ = π₯ β (π¦ β€ (1 / 2) β π₯ β€ (1 / 2))) |
64 | | oveq2 7416 |
. . . . . 6
β’ (π¦ = π₯ β (2 Β· π¦) = (2 Β· π₯)) |
65 | 64 | fveq2d 6895 |
. . . . 5
β’ (π¦ = π₯ β (πΉβ(2 Β· π¦)) = (πΉβ(2 Β· π₯))) |
66 | 64 | oveq1d 7423 |
. . . . . 6
β’ (π¦ = π₯ β ((2 Β· π¦) β 1) = ((2 Β· π₯) β 1)) |
67 | 66 | fveq2d 6895 |
. . . . 5
β’ (π¦ = π₯ β (πΊβ((2 Β· π¦) β 1)) = (πΊβ((2 Β· π₯) β 1))) |
68 | 63, 65, 67 | ifbieq12d 4556 |
. . . 4
β’ (π¦ = π₯ β if(π¦ β€ (1 / 2), (πΉβ(2 Β· π¦)), (πΊβ((2 Β· π¦) β 1))) = if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πΊβ((2 Β· π₯) β 1)))) |
69 | 68 | adantr 481 |
. . 3
β’ ((π¦ = π₯ β§ π§ = 0) β if(π¦ β€ (1 / 2), (πΉβ(2 Β· π¦)), (πΊβ((2 Β· π¦) β 1))) = if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πΊβ((2 Β· π₯) β 1)))) |
70 | 5, 6, 9, 5, 5, 62,
69 | cnmpt12 23170 |
. 2
β’ (π β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πΊβ((2 Β· π₯) β 1)))) β (II Cn π½)) |
71 | 3, 70 | eqeltrd 2833 |
1
β’ (π β (πΉ(*πβπ½)πΊ) β (II Cn π½)) |