MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcocn Structured version   Visualization version   GIF version

Theorem pcocn 25050
Description: The concatenation of two paths is a path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
Assertion
Ref Expression
pcocn (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))

Proof of Theorem pcocn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2pcoval 25044 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
4 iitopon 24905 . . . 4 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
65cnmptid 23669 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
7 0elunit 13509 . . . . 5 0 ∈ (0[,]1)
87a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]1))
95, 5, 8cnmptc 23670 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
10 eqid 2737 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
11 eqid 2737 . . . 4 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
12 eqid 2737 . . . 4 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
13 dfii2 24908 . . . 4 II = ((topGen‘ran (,)) ↾t (0[,]1))
14 0re 11263 . . . . 5 0 ∈ ℝ
1514a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ)
16 1re 11261 . . . . 5 1 ∈ ℝ
1716a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ)
18 halfre 12480 . . . . . 6 (1 / 2) ∈ ℝ
19 halfge0 12483 . . . . . 6 0 ≤ (1 / 2)
20 halflt1 12484 . . . . . . 7 (1 / 2) < 1
2118, 16, 20ltleii 11384 . . . . . 6 (1 / 2) ≤ 1
22 elicc01 13506 . . . . . 6 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
2318, 19, 21, 22mpbir3an 1342 . . . . 5 (1 / 2) ∈ (0[,]1)
2423a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ (0[,]1))
25 pcoval2.4 . . . . . 6 (𝜑 → (𝐹‘1) = (𝐺‘0))
2625adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0))
27 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
2827oveq2d 7447 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
29 2cn 12341 . . . . . . . 8 2 ∈ ℂ
30 2ne0 12370 . . . . . . . 8 2 ≠ 0
3129, 30recidi 11998 . . . . . . 7 (2 · (1 / 2)) = 1
3228, 31eqtrdi 2793 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
3332fveq2d 6910 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘(2 · 𝑦)) = (𝐹‘1))
3432oveq1d 7446 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = (1 − 1))
35 1m1e0 12338 . . . . . . 7 (1 − 1) = 0
3634, 35eqtrdi 2793 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = 0)
3736fveq2d 6910 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐺‘((2 · 𝑦) − 1)) = (𝐺‘0))
3826, 33, 373eqtr4d 2787 . . . 4 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘(2 · 𝑦)) = (𝐺‘((2 · 𝑦) − 1)))
39 retopon 24784 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
40 iccssre 13469 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
4114, 18, 40mp2an 692 . . . . . . 7 (0[,](1 / 2)) ⊆ ℝ
42 resttopon 23169 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
4339, 41, 42mp2an 692 . . . . . 6 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
4443a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
4544, 5cnmpt1st 23676 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
4611iihalf1cn 24959 . . . . . . 7 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
4746a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
48 oveq2 7439 . . . . . 6 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
4944, 5, 45, 44, 47, 48cnmpt21 23679 . . . . 5 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
5044, 5, 49, 1cnmpt21f 23680 . . . 4 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (𝐹‘(2 · 𝑦))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn 𝐽))
51 iccssre 13469 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
5218, 16, 51mp2an 692 . . . . . . 7 ((1 / 2)[,]1) ⊆ ℝ
53 resttopon 23169 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
5439, 52, 53mp2an 692 . . . . . 6 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
5554a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
5655, 5cnmpt1st 23676 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
5712iihalf2cn 24962 . . . . . . 7 (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
5857a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
5948oveq1d 7446 . . . . . 6 (𝑥 = 𝑦 → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1))
6055, 5, 56, 55, 58, 59cnmpt21 23679 . . . . 5 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
6155, 5, 60, 2cnmpt21f 23680 . . . 4 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ (𝐺‘((2 · 𝑦) − 1))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽))
6210, 11, 12, 13, 15, 17, 24, 5, 38, 50, 61cnmpopc 24955 . . 3 (𝜑 → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1)))) ∈ ((II ×t II) Cn 𝐽))
63 breq1 5146 . . . . 5 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
64 oveq2 7439 . . . . . 6 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
6564fveq2d 6910 . . . . 5 (𝑦 = 𝑥 → (𝐹‘(2 · 𝑦)) = (𝐹‘(2 · 𝑥)))
6664oveq1d 7446 . . . . . 6 (𝑦 = 𝑥 → ((2 · 𝑦) − 1) = ((2 · 𝑥) − 1))
6766fveq2d 6910 . . . . 5 (𝑦 = 𝑥 → (𝐺‘((2 · 𝑦) − 1)) = (𝐺‘((2 · 𝑥) − 1)))
6863, 65, 67ifbieq12d 4554 . . . 4 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
6968adantr 480 . . 3 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
705, 6, 9, 5, 5, 62, 69cnmpt12 23675 . 2 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ (II Cn 𝐽))
713, 70eqeltrd 2841 1 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  (,)cioo 13387  [,]cicc 13390  t crest 17465  topGenctg 17482  TopOnctopon 22916   Cn ccn 23232  IIcii 24901  *𝑝cpco 25033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-ii 24903  df-pco 25038
This theorem is referenced by:  copco  25051  pcohtpylem  25052  pcohtpy  25053  pcoass  25057  pcorevlem  25059  om1addcl  25066  pi1xfrf  25086  pi1xfr  25088  pi1xfrcnvlem  25089  pi1coghm  25094  connpconn  35240  sconnpht2  35243  cvmlift3lem6  35329
  Copyright terms: Public domain W3C validator