MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcocn Structured version   Visualization version   GIF version

Theorem pcocn 24950
Description: The concatenation of two paths is a path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
Assertion
Ref Expression
pcocn (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))

Proof of Theorem pcocn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2pcoval 24944 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
4 iitopon 24805 . . . 4 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
65cnmptid 23581 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
7 0elunit 13406 . . . . 5 0 ∈ (0[,]1)
87a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]1))
95, 5, 8cnmptc 23582 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
10 eqid 2729 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
11 eqid 2729 . . . 4 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
12 eqid 2729 . . . 4 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
13 dfii2 24808 . . . 4 II = ((topGen‘ran (,)) ↾t (0[,]1))
14 0re 11152 . . . . 5 0 ∈ ℝ
1514a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ)
16 1re 11150 . . . . 5 1 ∈ ℝ
1716a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ)
18 halfre 12371 . . . . . 6 (1 / 2) ∈ ℝ
19 halfge0 12374 . . . . . 6 0 ≤ (1 / 2)
20 halflt1 12375 . . . . . . 7 (1 / 2) < 1
2118, 16, 20ltleii 11273 . . . . . 6 (1 / 2) ≤ 1
22 elicc01 13403 . . . . . 6 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
2318, 19, 21, 22mpbir3an 1342 . . . . 5 (1 / 2) ∈ (0[,]1)
2423a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ (0[,]1))
25 pcoval2.4 . . . . . 6 (𝜑 → (𝐹‘1) = (𝐺‘0))
2625adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0))
27 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
2827oveq2d 7385 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
29 2cn 12237 . . . . . . . 8 2 ∈ ℂ
30 2ne0 12266 . . . . . . . 8 2 ≠ 0
3129, 30recidi 11889 . . . . . . 7 (2 · (1 / 2)) = 1
3228, 31eqtrdi 2780 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
3332fveq2d 6844 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘(2 · 𝑦)) = (𝐹‘1))
3432oveq1d 7384 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = (1 − 1))
35 1m1e0 12234 . . . . . . 7 (1 − 1) = 0
3634, 35eqtrdi 2780 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = 0)
3736fveq2d 6844 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐺‘((2 · 𝑦) − 1)) = (𝐺‘0))
3826, 33, 373eqtr4d 2774 . . . 4 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝐹‘(2 · 𝑦)) = (𝐺‘((2 · 𝑦) − 1)))
39 retopon 24684 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
40 iccssre 13366 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
4114, 18, 40mp2an 692 . . . . . . 7 (0[,](1 / 2)) ⊆ ℝ
42 resttopon 23081 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
4339, 41, 42mp2an 692 . . . . . 6 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
4443a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
4544, 5cnmpt1st 23588 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
4611iihalf1cn 24859 . . . . . . 7 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
4746a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
48 oveq2 7377 . . . . . 6 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
4944, 5, 45, 44, 47, 48cnmpt21 23591 . . . . 5 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
5044, 5, 49, 1cnmpt21f 23592 . . . 4 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (𝐹‘(2 · 𝑦))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn 𝐽))
51 iccssre 13366 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
5218, 16, 51mp2an 692 . . . . . . 7 ((1 / 2)[,]1) ⊆ ℝ
53 resttopon 23081 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
5439, 52, 53mp2an 692 . . . . . 6 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
5554a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
5655, 5cnmpt1st 23588 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
5712iihalf2cn 24862 . . . . . . 7 (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
5857a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
5948oveq1d 7384 . . . . . 6 (𝑥 = 𝑦 → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1))
6055, 5, 56, 55, 58, 59cnmpt21 23591 . . . . 5 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
6155, 5, 60, 2cnmpt21f 23592 . . . 4 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ (𝐺‘((2 · 𝑦) − 1))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽))
6210, 11, 12, 13, 15, 17, 24, 5, 38, 50, 61cnmpopc 24855 . . 3 (𝜑 → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1)))) ∈ ((II ×t II) Cn 𝐽))
63 breq1 5105 . . . . 5 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
64 oveq2 7377 . . . . . 6 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
6564fveq2d 6844 . . . . 5 (𝑦 = 𝑥 → (𝐹‘(2 · 𝑦)) = (𝐹‘(2 · 𝑥)))
6664oveq1d 7384 . . . . . 6 (𝑦 = 𝑥 → ((2 · 𝑦) − 1) = ((2 · 𝑥) − 1))
6766fveq2d 6844 . . . . 5 (𝑦 = 𝑥 → (𝐺‘((2 · 𝑦) − 1)) = (𝐺‘((2 · 𝑥) − 1)))
6863, 65, 67ifbieq12d 4513 . . . 4 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
6968adantr 480 . . 3 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), (𝐹‘(2 · 𝑦)), (𝐺‘((2 · 𝑦) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
705, 6, 9, 5, 5, 62, 69cnmpt12 23587 . 2 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ (II Cn 𝐽))
713, 70eqeltrd 2828 1 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  ran crn 5632  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  cle 11185  cmin 11381   / cdiv 11811  2c2 12217  (,)cioo 13282  [,]cicc 13285  t crest 17359  topGenctg 17376  TopOnctopon 22830   Cn ccn 23144  IIcii 24801  *𝑝cpco 24933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-cn 23147  df-cnp 23148  df-tx 23482  df-hmeo 23675  df-xms 24241  df-ms 24242  df-tms 24243  df-ii 24803  df-pco 24938
This theorem is referenced by:  copco  24951  pcohtpylem  24952  pcohtpy  24953  pcoass  24957  pcorevlem  24959  om1addcl  24966  pi1xfrf  24986  pi1xfr  24988  pi1xfrcnvlem  24989  pi1coghm  24994  connpconn  35215  sconnpht2  35218  cvmlift3lem6  35304
  Copyright terms: Public domain W3C validator