MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaclem Structured version   Visualization version   GIF version

Theorem gchaclem 10697
Description: Lemma for gchac 10700 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
gchaclem.1 (𝜑 → ω ≼ 𝐴)
gchaclem.3 (𝜑 → 𝒫 𝐶 ∈ GCH)
gchaclem.4 (𝜑 → (𝐴𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵)))
Assertion
Ref Expression
gchaclem (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵)))

Proof of Theorem gchaclem
StepHypRef Expression
1 gchaclem.4 . . . 4 (𝜑 → (𝐴𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵)))
21simpld 494 . . 3 (𝜑𝐴𝐶)
3 reldom 8970 . . . . . 6 Rel ≼
43brrelex2i 5716 . . . . 5 (𝐴𝐶𝐶 ∈ V)
52, 4syl 17 . . . 4 (𝜑𝐶 ∈ V)
6 canth2g 9150 . . . 4 (𝐶 ∈ V → 𝐶 ≺ 𝒫 𝐶)
7 sdomdom 8999 . . . 4 (𝐶 ≺ 𝒫 𝐶𝐶 ≼ 𝒫 𝐶)
85, 6, 73syl 18 . . 3 (𝜑𝐶 ≼ 𝒫 𝐶)
9 domtr 9026 . . 3 ((𝐴𝐶𝐶 ≼ 𝒫 𝐶) → 𝐴 ≼ 𝒫 𝐶)
102, 8, 9syl2anc 584 . 2 (𝜑𝐴 ≼ 𝒫 𝐶)
11 gchaclem.3 . . . . . 6 (𝜑 → 𝒫 𝐶 ∈ GCH)
1211adantr 480 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → 𝒫 𝐶 ∈ GCH)
13 gchaclem.1 . . . . . . . 8 (𝜑 → ω ≼ 𝐴)
14 domtr 9026 . . . . . . . 8 ((ω ≼ 𝐴𝐴𝐶) → ω ≼ 𝐶)
1513, 2, 14syl2anc 584 . . . . . . 7 (𝜑 → ω ≼ 𝐶)
1615adantr 480 . . . . . 6 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → ω ≼ 𝐶)
17 pwdjuidm 10211 . . . . . 6 (ω ≼ 𝐶 → (𝒫 𝐶 ⊔ 𝒫 𝐶) ≈ 𝒫 𝐶)
1816, 17syl 17 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶 ⊔ 𝒫 𝐶) ≈ 𝒫 𝐶)
19 simpr 484 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → 𝐵 ≼ 𝒫 𝒫 𝐶)
20 gchdomtri 10648 . . . . 5 ((𝒫 𝐶 ∈ GCH ∧ (𝒫 𝐶 ⊔ 𝒫 𝐶) ≈ 𝒫 𝐶𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶))
2112, 18, 19, 20syl3anc 1373 . . . 4 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶))
2221ex 412 . . 3 (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶)))
23 pwdom 9148 . . . . 5 (𝐴𝐶 → 𝒫 𝐴 ≼ 𝒫 𝐶)
24 domtr 9026 . . . . . 6 ((𝒫 𝐴 ≼ 𝒫 𝐶 ∧ 𝒫 𝐶𝐵) → 𝒫 𝐴𝐵)
2524ex 412 . . . . 5 (𝒫 𝐴 ≼ 𝒫 𝐶 → (𝒫 𝐶𝐵 → 𝒫 𝐴𝐵))
262, 23, 253syl 18 . . . 4 (𝜑 → (𝒫 𝐶𝐵 → 𝒫 𝐴𝐵))
271simprd 495 . . . 4 (𝜑 → (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵))
2826, 27jaod 859 . . 3 (𝜑 → ((𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶) → 𝒫 𝐴𝐵))
2922, 28syld 47 . 2 (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵))
3010, 29jca 511 1 (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2109  Vcvv 3464  𝒫 cpw 4580   class class class wbr 5124  ωcom 7866  cen 8961  cdom 8962  csdm 8963  cdju 9917  GCHcgch 10639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-wdom 9584  df-dju 9920  df-card 9958  df-gch 10640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator