MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaclem Structured version   Visualization version   GIF version

Theorem gchaclem 10434
Description: Lemma for gchac 10437 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
gchaclem.1 (𝜑 → ω ≼ 𝐴)
gchaclem.3 (𝜑 → 𝒫 𝐶 ∈ GCH)
gchaclem.4 (𝜑 → (𝐴𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵)))
Assertion
Ref Expression
gchaclem (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵)))

Proof of Theorem gchaclem
StepHypRef Expression
1 gchaclem.4 . . . 4 (𝜑 → (𝐴𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵)))
21simpld 495 . . 3 (𝜑𝐴𝐶)
3 reldom 8739 . . . . . 6 Rel ≼
43brrelex2i 5644 . . . . 5 (𝐴𝐶𝐶 ∈ V)
52, 4syl 17 . . . 4 (𝜑𝐶 ∈ V)
6 canth2g 8918 . . . 4 (𝐶 ∈ V → 𝐶 ≺ 𝒫 𝐶)
7 sdomdom 8768 . . . 4 (𝐶 ≺ 𝒫 𝐶𝐶 ≼ 𝒫 𝐶)
85, 6, 73syl 18 . . 3 (𝜑𝐶 ≼ 𝒫 𝐶)
9 domtr 8793 . . 3 ((𝐴𝐶𝐶 ≼ 𝒫 𝐶) → 𝐴 ≼ 𝒫 𝐶)
102, 8, 9syl2anc 584 . 2 (𝜑𝐴 ≼ 𝒫 𝐶)
11 gchaclem.3 . . . . . 6 (𝜑 → 𝒫 𝐶 ∈ GCH)
1211adantr 481 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → 𝒫 𝐶 ∈ GCH)
13 gchaclem.1 . . . . . . . 8 (𝜑 → ω ≼ 𝐴)
14 domtr 8793 . . . . . . . 8 ((ω ≼ 𝐴𝐴𝐶) → ω ≼ 𝐶)
1513, 2, 14syl2anc 584 . . . . . . 7 (𝜑 → ω ≼ 𝐶)
1615adantr 481 . . . . . 6 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → ω ≼ 𝐶)
17 pwdjuidm 9947 . . . . . 6 (ω ≼ 𝐶 → (𝒫 𝐶 ⊔ 𝒫 𝐶) ≈ 𝒫 𝐶)
1816, 17syl 17 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶 ⊔ 𝒫 𝐶) ≈ 𝒫 𝐶)
19 simpr 485 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → 𝐵 ≼ 𝒫 𝒫 𝐶)
20 gchdomtri 10385 . . . . 5 ((𝒫 𝐶 ∈ GCH ∧ (𝒫 𝐶 ⊔ 𝒫 𝐶) ≈ 𝒫 𝐶𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶))
2112, 18, 19, 20syl3anc 1370 . . . 4 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶))
2221ex 413 . . 3 (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶)))
23 pwdom 8916 . . . . 5 (𝐴𝐶 → 𝒫 𝐴 ≼ 𝒫 𝐶)
24 domtr 8793 . . . . . 6 ((𝒫 𝐴 ≼ 𝒫 𝐶 ∧ 𝒫 𝐶𝐵) → 𝒫 𝐴𝐵)
2524ex 413 . . . . 5 (𝒫 𝐴 ≼ 𝒫 𝐶 → (𝒫 𝐶𝐵 → 𝒫 𝐴𝐵))
262, 23, 253syl 18 . . . 4 (𝜑 → (𝒫 𝐶𝐵 → 𝒫 𝐴𝐵))
271simprd 496 . . . 4 (𝜑 → (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵))
2826, 27jaod 856 . . 3 (𝜑 → ((𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶) → 𝒫 𝐴𝐵))
2922, 28syld 47 . 2 (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵))
3010, 29jca 512 1 (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  wcel 2106  Vcvv 3432  𝒫 cpw 4533   class class class wbr 5074  ωcom 7712  cen 8730  cdom 8731  csdm 8732  cdju 9656  GCHcgch 10376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-wdom 9324  df-dju 9659  df-card 9697  df-gch 10377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator