Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gchaclem | Structured version Visualization version GIF version |
Description: Lemma for gchac 10368 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchaclem.1 | ⊢ (𝜑 → ω ≼ 𝐴) |
gchaclem.3 | ⊢ (𝜑 → 𝒫 𝐶 ∈ GCH) |
gchaclem.4 | ⊢ (𝜑 → (𝐴 ≼ 𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) |
Ref | Expression |
---|---|
gchaclem | ⊢ (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gchaclem.4 | . . . 4 ⊢ (𝜑 → (𝐴 ≼ 𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) | |
2 | 1 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐴 ≼ 𝐶) |
3 | reldom 8697 | . . . . . 6 ⊢ Rel ≼ | |
4 | 3 | brrelex2i 5635 | . . . . 5 ⊢ (𝐴 ≼ 𝐶 → 𝐶 ∈ V) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) |
6 | canth2g 8867 | . . . 4 ⊢ (𝐶 ∈ V → 𝐶 ≺ 𝒫 𝐶) | |
7 | sdomdom 8723 | . . . 4 ⊢ (𝐶 ≺ 𝒫 𝐶 → 𝐶 ≼ 𝒫 𝐶) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐶 ≼ 𝒫 𝐶) |
9 | domtr 8748 | . . 3 ⊢ ((𝐴 ≼ 𝐶 ∧ 𝐶 ≼ 𝒫 𝐶) → 𝐴 ≼ 𝒫 𝐶) | |
10 | 2, 8, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐴 ≼ 𝒫 𝐶) |
11 | gchaclem.3 | . . . . . 6 ⊢ (𝜑 → 𝒫 𝐶 ∈ GCH) | |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → 𝒫 𝐶 ∈ GCH) |
13 | gchaclem.1 | . . . . . . . 8 ⊢ (𝜑 → ω ≼ 𝐴) | |
14 | domtr 8748 | . . . . . . . 8 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≼ 𝐶) → ω ≼ 𝐶) | |
15 | 13, 2, 14 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → ω ≼ 𝐶) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → ω ≼ 𝐶) |
17 | pwdjuidm 9878 | . . . . . 6 ⊢ (ω ≼ 𝐶 → (𝒫 𝐶 ⊔ 𝒫 𝐶) ≈ 𝒫 𝐶) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶 ⊔ 𝒫 𝐶) ≈ 𝒫 𝐶) |
19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → 𝐵 ≼ 𝒫 𝒫 𝐶) | |
20 | gchdomtri 10316 | . . . . 5 ⊢ ((𝒫 𝐶 ∈ GCH ∧ (𝒫 𝐶 ⊔ 𝒫 𝐶) ≈ 𝒫 𝐶 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶)) | |
21 | 12, 18, 19, 20 | syl3anc 1369 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶)) |
22 | 21 | ex 412 | . . 3 ⊢ (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → (𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶))) |
23 | pwdom 8865 | . . . . 5 ⊢ (𝐴 ≼ 𝐶 → 𝒫 𝐴 ≼ 𝒫 𝐶) | |
24 | domtr 8748 | . . . . . 6 ⊢ ((𝒫 𝐴 ≼ 𝒫 𝐶 ∧ 𝒫 𝐶 ≼ 𝐵) → 𝒫 𝐴 ≼ 𝐵) | |
25 | 24 | ex 412 | . . . . 5 ⊢ (𝒫 𝐴 ≼ 𝒫 𝐶 → (𝒫 𝐶 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝐵)) |
26 | 2, 23, 25 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝒫 𝐶 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝐵)) |
27 | 1 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵)) |
28 | 26, 27 | jaod 855 | . . 3 ⊢ (𝜑 → ((𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶) → 𝒫 𝐴 ≼ 𝐵)) |
29 | 22, 28 | syld 47 | . 2 ⊢ (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵)) |
30 | 10, 29 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 class class class wbr 5070 ωcom 7687 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 ⊔ cdju 9587 GCHcgch 10307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-wdom 9254 df-dju 9590 df-card 9628 df-gch 10308 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |