MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmelbas Structured version   Visualization version   GIF version

Theorem dsmmelbas 21634
Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmelbas.p 𝑃 = (𝑆Xs𝑅)
dsmmelbas.c 𝐶 = (𝑆m 𝑅)
dsmmelbas.b 𝐵 = (Base‘𝑃)
dsmmelbas.h 𝐻 = (Base‘𝐶)
dsmmelbas.i (𝜑𝐼𝑉)
dsmmelbas.r (𝜑𝑅 Fn 𝐼)
Assertion
Ref Expression
dsmmelbas (𝜑 → (𝑋𝐻 ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
Distinct variable groups:   𝑆,𝑎   𝑅,𝑎   𝑋,𝑎   𝐼,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝑃(𝑎)   𝐻(𝑎)   𝑉(𝑎)

Proof of Theorem dsmmelbas
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 dsmmelbas.h . . . . 5 𝐻 = (Base‘𝐶)
2 dsmmelbas.c . . . . . 6 𝐶 = (𝑆m 𝑅)
32fveq2i 6888 . . . . 5 (Base‘𝐶) = (Base‘(𝑆m 𝑅))
41, 3eqtri 2754 . . . 4 𝐻 = (Base‘(𝑆m 𝑅))
5 dsmmelbas.r . . . . . 6 (𝜑𝑅 Fn 𝐼)
6 dsmmelbas.i . . . . . 6 (𝜑𝐼𝑉)
7 fnex 7214 . . . . . 6 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
85, 6, 7syl2anc 583 . . . . 5 (𝜑𝑅 ∈ V)
9 eqid 2726 . . . . . 6 {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin}
109dsmmbase 21630 . . . . 5 (𝑅 ∈ V → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
118, 10syl 17 . . . 4 (𝜑 → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
124, 11eqtr4id 2785 . . 3 (𝜑𝐻 = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin})
1312eleq2d 2813 . 2 (𝜑 → (𝑋𝐻𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin}))
14 fveq1 6884 . . . . . . 7 (𝑏 = 𝑋 → (𝑏𝑎) = (𝑋𝑎))
1514neeq1d 2994 . . . . . 6 (𝑏 = 𝑋 → ((𝑏𝑎) ≠ (0g‘(𝑅𝑎)) ↔ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))))
1615rabbidv 3434 . . . . 5 (𝑏 = 𝑋 → {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
1716eleq1d 2812 . . . 4 (𝑏 = 𝑋 → ({𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ↔ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1817elrab 3678 . . 3 (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} ↔ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
19 dsmmelbas.b . . . . . . 7 𝐵 = (Base‘𝑃)
20 dsmmelbas.p . . . . . . . 8 𝑃 = (𝑆Xs𝑅)
2120fveq2i 6888 . . . . . . 7 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
2219, 21eqtr2i 2755 . . . . . 6 (Base‘(𝑆Xs𝑅)) = 𝐵
2322eleq2i 2819 . . . . 5 (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋𝐵)
2423a1i 11 . . . 4 (𝜑 → (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋𝐵))
25 fndm 6646 . . . . . 6 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
26 rabeq 3440 . . . . . 6 (dom 𝑅 = 𝐼 → {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
275, 25, 263syl 18 . . . . 5 (𝜑 → {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
2827eleq1d 2812 . . . 4 (𝜑 → ({𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ↔ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
2924, 28anbi12d 630 . . 3 (𝜑 → ((𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin) ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
3018, 29bitrid 283 . 2 (𝜑 → (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
3113, 30bitrd 279 1 (𝜑 → (𝑋𝐻 ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2934  {crab 3426  Vcvv 3468  dom cdm 5669   Fn wfn 6532  cfv 6537  (class class class)co 7405  Fincfn 8941  Basecbs 17153  0gc0g 17394  Xscprds 17400  m cdsmm 21626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-hom 17230  df-cco 17231  df-prds 17402  df-dsmm 21627
This theorem is referenced by:  dsmm0cl  21635  dsmmacl  21636  dsmmsubg  21638  dsmmlss  21639
  Copyright terms: Public domain W3C validator