![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dsmmelbas | Structured version Visualization version GIF version |
Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
Ref | Expression |
---|---|
dsmmelbas.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
dsmmelbas.c | ⊢ 𝐶 = (𝑆 ⊕m 𝑅) |
dsmmelbas.b | ⊢ 𝐵 = (Base‘𝑃) |
dsmmelbas.h | ⊢ 𝐻 = (Base‘𝐶) |
dsmmelbas.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
dsmmelbas.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
Ref | Expression |
---|---|
dsmmelbas | ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsmmelbas.h | . . . . 5 ⊢ 𝐻 = (Base‘𝐶) | |
2 | dsmmelbas.c | . . . . . 6 ⊢ 𝐶 = (𝑆 ⊕m 𝑅) | |
3 | 2 | fveq2i 6910 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝑆 ⊕m 𝑅)) |
4 | 1, 3 | eqtri 2763 | . . . 4 ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
5 | dsmmelbas.r | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
6 | dsmmelbas.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | fnex 7237 | . . . . . 6 ⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) | |
8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
9 | eqid 2735 | . . . . . 6 ⊢ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} | |
10 | 9 | dsmmbase 21773 | . . . . 5 ⊢ (𝑅 ∈ V → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
12 | 4, 11 | eqtr4id 2794 | . . 3 ⊢ (𝜑 → 𝐻 = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin}) |
13 | 12 | eleq2d 2825 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ 𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin})) |
14 | fveq1 6906 | . . . . . . 7 ⊢ (𝑏 = 𝑋 → (𝑏‘𝑎) = (𝑋‘𝑎)) | |
15 | 14 | neeq1d 2998 | . . . . . 6 ⊢ (𝑏 = 𝑋 → ((𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎)))) |
16 | 15 | rabbidv 3441 | . . . . 5 ⊢ (𝑏 = 𝑋 → {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) |
17 | 16 | eleq1d 2824 | . . . 4 ⊢ (𝑏 = 𝑋 → ({𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ↔ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
18 | 17 | elrab 3695 | . . 3 ⊢ (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} ↔ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
19 | dsmmelbas.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
20 | dsmmelbas.p | . . . . . . . 8 ⊢ 𝑃 = (𝑆Xs𝑅) | |
21 | 20 | fveq2i 6910 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘(𝑆Xs𝑅)) |
22 | 19, 21 | eqtr2i 2764 | . . . . . 6 ⊢ (Base‘(𝑆Xs𝑅)) = 𝐵 |
23 | 22 | eleq2i 2831 | . . . . 5 ⊢ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋 ∈ 𝐵) |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋 ∈ 𝐵)) |
25 | fndm 6672 | . . . . . 6 ⊢ (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼) | |
26 | rabeq 3448 | . . . . . 6 ⊢ (dom 𝑅 = 𝐼 → {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) | |
27 | 5, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) |
28 | 27 | eleq1d 2824 | . . . 4 ⊢ (𝜑 → ({𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ↔ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
29 | 24, 28 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
30 | 18, 29 | bitrid 283 | . 2 ⊢ (𝜑 → (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
31 | 13, 30 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 Vcvv 3478 dom cdm 5689 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 Basecbs 17245 0gc0g 17486 Xscprds 17492 ⊕m cdsmm 21769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-prds 17494 df-dsmm 21770 |
This theorem is referenced by: dsmm0cl 21778 dsmmacl 21779 dsmmsubg 21781 dsmmlss 21782 |
Copyright terms: Public domain | W3C validator |