![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dsmmelbas | Structured version Visualization version GIF version |
Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
Ref | Expression |
---|---|
dsmmelbas.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
dsmmelbas.c | ⊢ 𝐶 = (𝑆 ⊕m 𝑅) |
dsmmelbas.b | ⊢ 𝐵 = (Base‘𝑃) |
dsmmelbas.h | ⊢ 𝐻 = (Base‘𝐶) |
dsmmelbas.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
dsmmelbas.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
Ref | Expression |
---|---|
dsmmelbas | ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsmmelbas.h | . . . . 5 ⊢ 𝐻 = (Base‘𝐶) | |
2 | dsmmelbas.c | . . . . . 6 ⊢ 𝐶 = (𝑆 ⊕m 𝑅) | |
3 | 2 | fveq2i 6842 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝑆 ⊕m 𝑅)) |
4 | 1, 3 | eqtri 2764 | . . . 4 ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
5 | dsmmelbas.r | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
6 | dsmmelbas.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | fnex 7163 | . . . . . 6 ⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) | |
8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
9 | eqid 2736 | . . . . . 6 ⊢ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} | |
10 | 9 | dsmmbase 21126 | . . . . 5 ⊢ (𝑅 ∈ V → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
12 | 4, 11 | eqtr4id 2795 | . . 3 ⊢ (𝜑 → 𝐻 = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin}) |
13 | 12 | eleq2d 2823 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ 𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin})) |
14 | fveq1 6838 | . . . . . . 7 ⊢ (𝑏 = 𝑋 → (𝑏‘𝑎) = (𝑋‘𝑎)) | |
15 | 14 | neeq1d 3001 | . . . . . 6 ⊢ (𝑏 = 𝑋 → ((𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎)))) |
16 | 15 | rabbidv 3413 | . . . . 5 ⊢ (𝑏 = 𝑋 → {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) |
17 | 16 | eleq1d 2822 | . . . 4 ⊢ (𝑏 = 𝑋 → ({𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ↔ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
18 | 17 | elrab 3643 | . . 3 ⊢ (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} ↔ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
19 | dsmmelbas.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
20 | dsmmelbas.p | . . . . . . . 8 ⊢ 𝑃 = (𝑆Xs𝑅) | |
21 | 20 | fveq2i 6842 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘(𝑆Xs𝑅)) |
22 | 19, 21 | eqtr2i 2765 | . . . . . 6 ⊢ (Base‘(𝑆Xs𝑅)) = 𝐵 |
23 | 22 | eleq2i 2829 | . . . . 5 ⊢ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋 ∈ 𝐵) |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋 ∈ 𝐵)) |
25 | fndm 6602 | . . . . . 6 ⊢ (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼) | |
26 | rabeq 3419 | . . . . . 6 ⊢ (dom 𝑅 = 𝐼 → {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) | |
27 | 5, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) |
28 | 27 | eleq1d 2822 | . . . 4 ⊢ (𝜑 → ({𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ↔ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
29 | 24, 28 | anbi12d 631 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
30 | 18, 29 | bitrid 282 | . 2 ⊢ (𝜑 → (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
31 | 13, 30 | bitrd 278 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 {crab 3405 Vcvv 3443 dom cdm 5631 Fn wfn 6488 ‘cfv 6493 (class class class)co 7353 Fincfn 8879 Basecbs 17075 0gc0g 17313 Xscprds 17319 ⊕m cdsmm 21122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7309 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7799 df-1st 7917 df-2nd 7918 df-frecs 8208 df-wrecs 8239 df-recs 8313 df-rdg 8352 df-1o 8408 df-er 8644 df-map 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9374 df-pnf 11187 df-mnf 11188 df-xr 11189 df-ltxr 11190 df-le 11191 df-sub 11383 df-neg 11384 df-nn 12150 df-2 12212 df-3 12213 df-4 12214 df-5 12215 df-6 12216 df-7 12217 df-8 12218 df-9 12219 df-n0 12410 df-z 12496 df-dec 12615 df-uz 12760 df-fz 13417 df-struct 17011 df-sets 17028 df-slot 17046 df-ndx 17058 df-base 17076 df-ress 17105 df-plusg 17138 df-mulr 17139 df-sca 17141 df-vsca 17142 df-ip 17143 df-tset 17144 df-ple 17145 df-ds 17147 df-hom 17149 df-cco 17150 df-prds 17321 df-dsmm 21123 |
This theorem is referenced by: dsmm0cl 21131 dsmmacl 21132 dsmmsubg 21134 dsmmlss 21135 |
Copyright terms: Public domain | W3C validator |