MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmelbas Structured version   Visualization version   GIF version

Theorem dsmmelbas 21782
Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmelbas.p 𝑃 = (𝑆Xs𝑅)
dsmmelbas.c 𝐶 = (𝑆m 𝑅)
dsmmelbas.b 𝐵 = (Base‘𝑃)
dsmmelbas.h 𝐻 = (Base‘𝐶)
dsmmelbas.i (𝜑𝐼𝑉)
dsmmelbas.r (𝜑𝑅 Fn 𝐼)
Assertion
Ref Expression
dsmmelbas (𝜑 → (𝑋𝐻 ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
Distinct variable groups:   𝑆,𝑎   𝑅,𝑎   𝑋,𝑎   𝐼,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝑃(𝑎)   𝐻(𝑎)   𝑉(𝑎)

Proof of Theorem dsmmelbas
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 dsmmelbas.h . . . . 5 𝐻 = (Base‘𝐶)
2 dsmmelbas.c . . . . . 6 𝐶 = (𝑆m 𝑅)
32fveq2i 6923 . . . . 5 (Base‘𝐶) = (Base‘(𝑆m 𝑅))
41, 3eqtri 2768 . . . 4 𝐻 = (Base‘(𝑆m 𝑅))
5 dsmmelbas.r . . . . . 6 (𝜑𝑅 Fn 𝐼)
6 dsmmelbas.i . . . . . 6 (𝜑𝐼𝑉)
7 fnex 7254 . . . . . 6 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
85, 6, 7syl2anc 583 . . . . 5 (𝜑𝑅 ∈ V)
9 eqid 2740 . . . . . 6 {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin}
109dsmmbase 21778 . . . . 5 (𝑅 ∈ V → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
118, 10syl 17 . . . 4 (𝜑 → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
124, 11eqtr4id 2799 . . 3 (𝜑𝐻 = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin})
1312eleq2d 2830 . 2 (𝜑 → (𝑋𝐻𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin}))
14 fveq1 6919 . . . . . . 7 (𝑏 = 𝑋 → (𝑏𝑎) = (𝑋𝑎))
1514neeq1d 3006 . . . . . 6 (𝑏 = 𝑋 → ((𝑏𝑎) ≠ (0g‘(𝑅𝑎)) ↔ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))))
1615rabbidv 3451 . . . . 5 (𝑏 = 𝑋 → {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
1716eleq1d 2829 . . . 4 (𝑏 = 𝑋 → ({𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ↔ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1817elrab 3708 . . 3 (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} ↔ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
19 dsmmelbas.b . . . . . . 7 𝐵 = (Base‘𝑃)
20 dsmmelbas.p . . . . . . . 8 𝑃 = (𝑆Xs𝑅)
2120fveq2i 6923 . . . . . . 7 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
2219, 21eqtr2i 2769 . . . . . 6 (Base‘(𝑆Xs𝑅)) = 𝐵
2322eleq2i 2836 . . . . 5 (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋𝐵)
2423a1i 11 . . . 4 (𝜑 → (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋𝐵))
25 fndm 6682 . . . . . 6 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
26 rabeq 3458 . . . . . 6 (dom 𝑅 = 𝐼 → {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
275, 25, 263syl 18 . . . . 5 (𝜑 → {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
2827eleq1d 2829 . . . 4 (𝜑 → ({𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ↔ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
2924, 28anbi12d 631 . . 3 (𝜑 → ((𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin) ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
3018, 29bitrid 283 . 2 (𝜑 → (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
3113, 30bitrd 279 1 (𝜑 → (𝑋𝐻 ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  dom cdm 5700   Fn wfn 6568  cfv 6573  (class class class)co 7448  Fincfn 9003  Basecbs 17258  0gc0g 17499  Xscprds 17505  m cdsmm 21774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-prds 17507  df-dsmm 21775
This theorem is referenced by:  dsmm0cl  21783  dsmmacl  21784  dsmmsubg  21786  dsmmlss  21787
  Copyright terms: Public domain W3C validator