| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dsmmelbas | Structured version Visualization version GIF version | ||
| Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| dsmmelbas.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
| dsmmelbas.c | ⊢ 𝐶 = (𝑆 ⊕m 𝑅) |
| dsmmelbas.b | ⊢ 𝐵 = (Base‘𝑃) |
| dsmmelbas.h | ⊢ 𝐻 = (Base‘𝐶) |
| dsmmelbas.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| dsmmelbas.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| Ref | Expression |
|---|---|
| dsmmelbas | ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmelbas.h | . . . . 5 ⊢ 𝐻 = (Base‘𝐶) | |
| 2 | dsmmelbas.c | . . . . . 6 ⊢ 𝐶 = (𝑆 ⊕m 𝑅) | |
| 3 | 2 | fveq2i 6864 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝑆 ⊕m 𝑅)) |
| 4 | 1, 3 | eqtri 2753 | . . . 4 ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
| 5 | dsmmelbas.r | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
| 6 | dsmmelbas.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | fnex 7194 | . . . . . 6 ⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 9 | eqid 2730 | . . . . . 6 ⊢ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} | |
| 10 | 9 | dsmmbase 21651 | . . . . 5 ⊢ (𝑅 ∈ V → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
| 12 | 4, 11 | eqtr4id 2784 | . . 3 ⊢ (𝜑 → 𝐻 = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin}) |
| 13 | 12 | eleq2d 2815 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ 𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin})) |
| 14 | fveq1 6860 | . . . . . . 7 ⊢ (𝑏 = 𝑋 → (𝑏‘𝑎) = (𝑋‘𝑎)) | |
| 15 | 14 | neeq1d 2985 | . . . . . 6 ⊢ (𝑏 = 𝑋 → ((𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎)))) |
| 16 | 15 | rabbidv 3416 | . . . . 5 ⊢ (𝑏 = 𝑋 → {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) |
| 17 | 16 | eleq1d 2814 | . . . 4 ⊢ (𝑏 = 𝑋 → ({𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ↔ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
| 18 | 17 | elrab 3662 | . . 3 ⊢ (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} ↔ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
| 19 | dsmmelbas.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
| 20 | dsmmelbas.p | . . . . . . . 8 ⊢ 𝑃 = (𝑆Xs𝑅) | |
| 21 | 20 | fveq2i 6864 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘(𝑆Xs𝑅)) |
| 22 | 19, 21 | eqtr2i 2754 | . . . . . 6 ⊢ (Base‘(𝑆Xs𝑅)) = 𝐵 |
| 23 | 22 | eleq2i 2821 | . . . . 5 ⊢ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋 ∈ 𝐵) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋 ∈ 𝐵)) |
| 25 | fndm 6624 | . . . . . 6 ⊢ (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼) | |
| 26 | rabeq 3423 | . . . . . 6 ⊢ (dom 𝑅 = 𝐼 → {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) | |
| 27 | 5, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) |
| 28 | 27 | eleq1d 2814 | . . . 4 ⊢ (𝜑 → ({𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ↔ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
| 29 | 24, 28 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
| 30 | 18, 29 | bitrid 283 | . 2 ⊢ (𝜑 → (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
| 31 | 13, 30 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 dom cdm 5641 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 Basecbs 17186 0gc0g 17409 Xscprds 17415 ⊕m cdsmm 21647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-prds 17417 df-dsmm 21648 |
| This theorem is referenced by: dsmm0cl 21656 dsmmacl 21657 dsmmsubg 21659 dsmmlss 21660 |
| Copyright terms: Public domain | W3C validator |