Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dsmmelbas | Structured version Visualization version GIF version |
Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
Ref | Expression |
---|---|
dsmmelbas.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
dsmmelbas.c | ⊢ 𝐶 = (𝑆 ⊕m 𝑅) |
dsmmelbas.b | ⊢ 𝐵 = (Base‘𝑃) |
dsmmelbas.h | ⊢ 𝐻 = (Base‘𝐶) |
dsmmelbas.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
dsmmelbas.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
Ref | Expression |
---|---|
dsmmelbas | ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsmmelbas.h | . . . . 5 ⊢ 𝐻 = (Base‘𝐶) | |
2 | dsmmelbas.c | . . . . . 6 ⊢ 𝐶 = (𝑆 ⊕m 𝑅) | |
3 | 2 | fveq2i 6720 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝑆 ⊕m 𝑅)) |
4 | 1, 3 | eqtri 2765 | . . . 4 ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
5 | dsmmelbas.r | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
6 | dsmmelbas.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | fnex 7033 | . . . . . 6 ⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) | |
8 | 5, 6, 7 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
9 | eqid 2737 | . . . . . 6 ⊢ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} | |
10 | 9 | dsmmbase 20697 | . . . . 5 ⊢ (𝑅 ∈ V → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
12 | 4, 11 | eqtr4id 2797 | . . 3 ⊢ (𝜑 → 𝐻 = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin}) |
13 | 12 | eleq2d 2823 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ 𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin})) |
14 | fveq1 6716 | . . . . . . 7 ⊢ (𝑏 = 𝑋 → (𝑏‘𝑎) = (𝑋‘𝑎)) | |
15 | 14 | neeq1d 3000 | . . . . . 6 ⊢ (𝑏 = 𝑋 → ((𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎)))) |
16 | 15 | rabbidv 3390 | . . . . 5 ⊢ (𝑏 = 𝑋 → {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) |
17 | 16 | eleq1d 2822 | . . . 4 ⊢ (𝑏 = 𝑋 → ({𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ↔ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
18 | 17 | elrab 3602 | . . 3 ⊢ (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} ↔ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
19 | dsmmelbas.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
20 | dsmmelbas.p | . . . . . . . 8 ⊢ 𝑃 = (𝑆Xs𝑅) | |
21 | 20 | fveq2i 6720 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘(𝑆Xs𝑅)) |
22 | 19, 21 | eqtr2i 2766 | . . . . . 6 ⊢ (Base‘(𝑆Xs𝑅)) = 𝐵 |
23 | 22 | eleq2i 2829 | . . . . 5 ⊢ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋 ∈ 𝐵) |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋 ∈ 𝐵)) |
25 | fndm 6481 | . . . . . 6 ⊢ (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼) | |
26 | rabeq 3394 | . . . . . 6 ⊢ (dom 𝑅 = 𝐼 → {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) | |
27 | 5, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) |
28 | 27 | eleq1d 2822 | . . . 4 ⊢ (𝜑 → ({𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ↔ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
29 | 24, 28 | anbi12d 634 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
30 | 18, 29 | syl5bb 286 | . 2 ⊢ (𝜑 → (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
31 | 13, 30 | bitrd 282 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 {crab 3065 Vcvv 3408 dom cdm 5551 Fn wfn 6375 ‘cfv 6380 (class class class)co 7213 Fincfn 8626 Basecbs 16760 0gc0g 16944 Xscprds 16950 ⊕m cdsmm 20693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-hom 16826 df-cco 16827 df-prds 16952 df-dsmm 20694 |
This theorem is referenced by: dsmm0cl 20702 dsmmacl 20703 dsmmsubg 20705 dsmmlss 20706 |
Copyright terms: Public domain | W3C validator |