| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dsmmelbas | Structured version Visualization version GIF version | ||
| Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| dsmmelbas.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
| dsmmelbas.c | ⊢ 𝐶 = (𝑆 ⊕m 𝑅) |
| dsmmelbas.b | ⊢ 𝐵 = (Base‘𝑃) |
| dsmmelbas.h | ⊢ 𝐻 = (Base‘𝐶) |
| dsmmelbas.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| dsmmelbas.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| Ref | Expression |
|---|---|
| dsmmelbas | ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmelbas.h | . . . . 5 ⊢ 𝐻 = (Base‘𝐶) | |
| 2 | dsmmelbas.c | . . . . . 6 ⊢ 𝐶 = (𝑆 ⊕m 𝑅) | |
| 3 | 2 | fveq2i 6829 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝑆 ⊕m 𝑅)) |
| 4 | 1, 3 | eqtri 2752 | . . . 4 ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
| 5 | dsmmelbas.r | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
| 6 | dsmmelbas.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | fnex 7157 | . . . . . 6 ⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 9 | eqid 2729 | . . . . . 6 ⊢ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} | |
| 10 | 9 | dsmmbase 21660 | . . . . 5 ⊢ (𝑅 ∈ V → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
| 12 | 4, 11 | eqtr4id 2783 | . . 3 ⊢ (𝜑 → 𝐻 = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin}) |
| 13 | 12 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ 𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin})) |
| 14 | fveq1 6825 | . . . . . . 7 ⊢ (𝑏 = 𝑋 → (𝑏‘𝑎) = (𝑋‘𝑎)) | |
| 15 | 14 | neeq1d 2984 | . . . . . 6 ⊢ (𝑏 = 𝑋 → ((𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎)))) |
| 16 | 15 | rabbidv 3404 | . . . . 5 ⊢ (𝑏 = 𝑋 → {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) |
| 17 | 16 | eleq1d 2813 | . . . 4 ⊢ (𝑏 = 𝑋 → ({𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ↔ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
| 18 | 17 | elrab 3650 | . . 3 ⊢ (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} ↔ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
| 19 | dsmmelbas.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
| 20 | dsmmelbas.p | . . . . . . . 8 ⊢ 𝑃 = (𝑆Xs𝑅) | |
| 21 | 20 | fveq2i 6829 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘(𝑆Xs𝑅)) |
| 22 | 19, 21 | eqtr2i 2753 | . . . . . 6 ⊢ (Base‘(𝑆Xs𝑅)) = 𝐵 |
| 23 | 22 | eleq2i 2820 | . . . . 5 ⊢ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋 ∈ 𝐵) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋 ∈ 𝐵)) |
| 25 | fndm 6589 | . . . . . 6 ⊢ (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼) | |
| 26 | rabeq 3411 | . . . . . 6 ⊢ (dom 𝑅 = 𝐼 → {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) | |
| 27 | 5, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) |
| 28 | 27 | eleq1d 2813 | . . . 4 ⊢ (𝜑 → ({𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ↔ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
| 29 | 24, 28 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
| 30 | 18, 29 | bitrid 283 | . 2 ⊢ (𝜑 → (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin} ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
| 31 | 13, 30 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑋 ∈ 𝐵 ∧ {𝑎 ∈ 𝐼 ∣ (𝑋‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3396 Vcvv 3438 dom cdm 5623 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 Basecbs 17138 0gc0g 17361 Xscprds 17367 ⊕m cdsmm 21656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-prds 17369 df-dsmm 21657 |
| This theorem is referenced by: dsmm0cl 21665 dsmmacl 21666 dsmmsubg 21668 dsmmlss 21669 |
| Copyright terms: Public domain | W3C validator |