MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmelbas Structured version   Visualization version   GIF version

Theorem dsmmelbas 21704
Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmelbas.p 𝑃 = (𝑆Xs𝑅)
dsmmelbas.c 𝐶 = (𝑆m 𝑅)
dsmmelbas.b 𝐵 = (Base‘𝑃)
dsmmelbas.h 𝐻 = (Base‘𝐶)
dsmmelbas.i (𝜑𝐼𝑉)
dsmmelbas.r (𝜑𝑅 Fn 𝐼)
Assertion
Ref Expression
dsmmelbas (𝜑 → (𝑋𝐻 ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
Distinct variable groups:   𝑆,𝑎   𝑅,𝑎   𝑋,𝑎   𝐼,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝑃(𝑎)   𝐻(𝑎)   𝑉(𝑎)

Proof of Theorem dsmmelbas
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 dsmmelbas.h . . . . 5 𝐻 = (Base‘𝐶)
2 dsmmelbas.c . . . . . 6 𝐶 = (𝑆m 𝑅)
32fveq2i 6884 . . . . 5 (Base‘𝐶) = (Base‘(𝑆m 𝑅))
41, 3eqtri 2759 . . . 4 𝐻 = (Base‘(𝑆m 𝑅))
5 dsmmelbas.r . . . . . 6 (𝜑𝑅 Fn 𝐼)
6 dsmmelbas.i . . . . . 6 (𝜑𝐼𝑉)
7 fnex 7214 . . . . . 6 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
85, 6, 7syl2anc 584 . . . . 5 (𝜑𝑅 ∈ V)
9 eqid 2736 . . . . . 6 {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin}
109dsmmbase 21700 . . . . 5 (𝑅 ∈ V → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
118, 10syl 17 . . . 4 (𝜑 → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
124, 11eqtr4id 2790 . . 3 (𝜑𝐻 = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin})
1312eleq2d 2821 . 2 (𝜑 → (𝑋𝐻𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin}))
14 fveq1 6880 . . . . . . 7 (𝑏 = 𝑋 → (𝑏𝑎) = (𝑋𝑎))
1514neeq1d 2992 . . . . . 6 (𝑏 = 𝑋 → ((𝑏𝑎) ≠ (0g‘(𝑅𝑎)) ↔ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))))
1615rabbidv 3428 . . . . 5 (𝑏 = 𝑋 → {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
1716eleq1d 2820 . . . 4 (𝑏 = 𝑋 → ({𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ↔ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1817elrab 3676 . . 3 (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} ↔ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
19 dsmmelbas.b . . . . . . 7 𝐵 = (Base‘𝑃)
20 dsmmelbas.p . . . . . . . 8 𝑃 = (𝑆Xs𝑅)
2120fveq2i 6884 . . . . . . 7 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
2219, 21eqtr2i 2760 . . . . . 6 (Base‘(𝑆Xs𝑅)) = 𝐵
2322eleq2i 2827 . . . . 5 (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋𝐵)
2423a1i 11 . . . 4 (𝜑 → (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋𝐵))
25 fndm 6646 . . . . . 6 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
26 rabeq 3435 . . . . . 6 (dom 𝑅 = 𝐼 → {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
275, 25, 263syl 18 . . . . 5 (𝜑 → {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
2827eleq1d 2820 . . . 4 (𝜑 → ({𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ↔ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
2924, 28anbi12d 632 . . 3 (𝜑 → ((𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin) ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
3018, 29bitrid 283 . 2 (𝜑 → (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
3113, 30bitrd 279 1 (𝜑 → (𝑋𝐻 ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  {crab 3420  Vcvv 3464  dom cdm 5659   Fn wfn 6531  cfv 6536  (class class class)co 7410  Fincfn 8964  Basecbs 17233  0gc0g 17458  Xscprds 17464  m cdsmm 21696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-prds 17466  df-dsmm 21697
This theorem is referenced by:  dsmm0cl  21705  dsmmacl  21706  dsmmsubg  21708  dsmmlss  21709
  Copyright terms: Public domain W3C validator