MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashecclwwlkn1 Structured version   Visualization version   GIF version

Theorem hashecclwwlkn1 28441
Description: The size of every equivalence class of the equivalence relation over the set of closed walks (defined as words) with a fixed length which is a prime number is 1 or equals this length. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
hashecclwwlkn1 ((𝑁 ∈ ℙ ∧ 𝑈 ∈ (𝑊 / )) → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺,𝑢   𝑈,𝑛,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝑈(𝑡)   𝐺(𝑡)

Proof of Theorem hashecclwwlkn1
Dummy variables 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . . 5 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlkn1 28439 . . . 4 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
4 rabeq 3418 . . . . . . . . . 10 (𝑊 = (𝑁 ClWWalksN 𝐺) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
51, 4mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
6 prmnn 16379 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
76nnnn0d 12293 . . . . . . . . . 10 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
81eleq2i 2830 . . . . . . . . . . 11 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalksN 𝐺))
98biimpi 215 . . . . . . . . . 10 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalksN 𝐺))
10 clwwlknscsh 28426 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
117, 9, 10syl2an 596 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
125, 11eqtrd 2778 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
1312eqeq2d 2749 . . . . . . 7 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
14 simpll 764 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ∈ Word (Vtx‘𝐺))
15 elnnne0 12247 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
16 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = (♯‘𝑥) → (𝑁 = 0 ↔ (♯‘𝑥) = 0))
1716eqcoms 2746 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑥) = 𝑁 → (𝑁 = 0 ↔ (♯‘𝑥) = 0))
18 hasheq0 14078 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ Word (Vtx‘𝐺) → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
1917, 18sylan9bbr 511 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 = 0 ↔ 𝑥 = ∅))
2019necon3bid 2988 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ≠ 0 ↔ 𝑥 ≠ ∅))
2120biimpcd 248 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2215, 21simplbiim 505 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2322impcom 408 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ≠ ∅)
24 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = 𝑁)
2524eqcomd 2744 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑁 = (♯‘𝑥))
2614, 23, 253jca 1127 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)))
2726ex 413 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ∈ ℕ → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
28 eqid 2738 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
2928clwwlknbp 28399 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
3027, 29syl11 33 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
318, 30syl5bi 241 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
326, 31syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℙ → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
3332imp 407 . . . . . . . . . 10 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)))
34 scshwfzeqfzo 14539 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3533, 34syl 17 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3635eqeq2d 2749 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
37 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
3837eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
3938cbvrexvw 3384 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
40 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ 𝑢 = (𝑥 cyclShift 𝑚)))
41 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢)
4240, 41bitrdi 287 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢))
4342rexbidv 3226 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑢 → (∃𝑚 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
4439, 43syl5bb 283 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑢 → (∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
4544cbvrabv 3426 . . . . . . . . . . . . . . . . . . 19 {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} = {𝑢 ∈ Word (Vtx‘𝐺) ∣ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢}
4645cshwshash 16806 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) → ((♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥) ∨ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1))
4746adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → ((♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥) ∨ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1))
4847orcomd 868 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → ((♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1 ∨ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥)))
49 fveqeq2 6783 . . . . . . . . . . . . . . . . . 18 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ↔ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1))
50 fveqeq2 6783 . . . . . . . . . . . . . . . . . 18 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = (♯‘𝑥) ↔ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥)))
5149, 50orbi12d 916 . . . . . . . . . . . . . . . . 17 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)) ↔ ((♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1 ∨ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥))))
5251adantl 482 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → (((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)) ↔ ((♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1 ∨ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥))))
5348, 52mpbird 256 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)))
5453ex 413 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥))))
5554ex 413 . . . . . . . . . . . . 13 (𝑥 ∈ Word (Vtx‘𝐺) → ((♯‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)))))
5655adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → ((♯‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)))))
57 eleq1 2826 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑥) → (𝑁 ∈ ℙ ↔ (♯‘𝑥) ∈ ℙ))
58 oveq2 7283 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (♯‘𝑥) → (0..^𝑁) = (0..^(♯‘𝑥)))
5958rexeqdv 3349 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑥) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
6059rabbidv 3414 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)})
6160eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}))
62 eqeq2 2750 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → ((♯‘𝑈) = 𝑁 ↔ (♯‘𝑈) = (♯‘𝑥)))
6362orbi2d 913 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁) ↔ ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥))))
6461, 63imbi12d 345 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑥) → ((𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)) ↔ (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)))))
6557, 64imbi12d 345 . . . . . . . . . . . . . 14 (𝑁 = (♯‘𝑥) → ((𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))) ↔ ((♯‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥))))))
6665eqcoms 2746 . . . . . . . . . . . . 13 ((♯‘𝑥) = 𝑁 → ((𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))) ↔ ((♯‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥))))))
6766adantl 482 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → ((𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))) ↔ ((♯‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥))))))
6856, 67mpbird 256 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))))
6929, 68syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))))
7069, 1eleq2s 2857 . . . . . . . . 9 (𝑥𝑊 → (𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))))
7170impcom 408 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
7236, 71sylbid 239 . . . . . . 7 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
7313, 72sylbid 239 . . . . . 6 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
7473rexlimdva 3213 . . . . 5 (𝑁 ∈ ℙ → (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
7574com12 32 . . . 4 (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑁 ∈ ℙ → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
763, 75syl6bi 252 . . 3 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) → (𝑁 ∈ ℙ → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))))
7776pm2.43i 52 . 2 (𝑈 ∈ (𝑊 / ) → (𝑁 ∈ ℙ → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
7877impcom 408 1 ((𝑁 ∈ ℙ ∧ 𝑈 ∈ (𝑊 / )) → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  c0 4256  {copab 5136  cfv 6433  (class class class)co 7275   / cqs 8497  0cc0 10871  1c1 10872  cn 11973  0cn0 12233  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   cyclShift ccsh 14501  cprime 16376  Vtxcvtx 27366   ClWWalksN cclwwlkn 28388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-substr 14354  df-pfx 14384  df-reps 14482  df-csh 14502  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-clwwlk 28346  df-clwwlkn 28389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator