MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashecclwwlkn1 Structured version   Visualization version   GIF version

Theorem hashecclwwlkn1 27841
Description: The size of every equivalence class of the equivalence relation over the set of closed walks (defined as words) with a fixed length which is a prime number is 1 or equals this length. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
hashecclwwlkn1 ((𝑁 ∈ ℙ ∧ 𝑈 ∈ (𝑊 / )) → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺,𝑢   𝑈,𝑛,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝑈(𝑡)   𝐺(𝑡)

Proof of Theorem hashecclwwlkn1
Dummy variables 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . . 5 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlkn1 27839 . . . 4 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
4 rabeq 3460 . . . . . . . . . 10 (𝑊 = (𝑁 ClWWalksN 𝐺) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
51, 4mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
6 prmnn 15995 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
76nnnn0d 11933 . . . . . . . . . 10 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
81eleq2i 2903 . . . . . . . . . . 11 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalksN 𝐺))
98biimpi 219 . . . . . . . . . 10 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalksN 𝐺))
10 clwwlknscsh 27826 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
117, 9, 10syl2an 598 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
125, 11eqtrd 2856 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
1312eqeq2d 2832 . . . . . . 7 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
14 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ∈ Word (Vtx‘𝐺))
15 elnnne0 11889 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
16 eqeq1 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = (♯‘𝑥) → (𝑁 = 0 ↔ (♯‘𝑥) = 0))
1716eqcoms 2829 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑥) = 𝑁 → (𝑁 = 0 ↔ (♯‘𝑥) = 0))
18 hasheq0 13708 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ Word (Vtx‘𝐺) → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
1917, 18sylan9bbr 514 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 = 0 ↔ 𝑥 = ∅))
2019necon3bid 3051 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ≠ 0 ↔ 𝑥 ≠ ∅))
2120biimpcd 252 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2215, 21simplbiim 508 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2322impcom 411 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ≠ ∅)
24 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = 𝑁)
2524eqcomd 2827 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑁 = (♯‘𝑥))
2614, 23, 253jca 1125 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)))
2726ex 416 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ∈ ℕ → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
28 eqid 2821 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
2928clwwlknbp 27799 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
3027, 29syl11 33 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
318, 30syl5bi 245 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
326, 31syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℙ → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
3332imp 410 . . . . . . . . . 10 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)))
34 scshwfzeqfzo 14167 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3533, 34syl 17 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3635eqeq2d 2832 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
37 oveq2 7138 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
3837eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
3938cbvrexvw 3427 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
40 eqeq1 2825 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ 𝑢 = (𝑥 cyclShift 𝑚)))
41 eqcom 2828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢)
4240, 41syl6bb 290 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢))
4342rexbidv 3283 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑢 → (∃𝑚 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
4439, 43syl5bb 286 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑢 → (∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
4544cbvrabv 3468 . . . . . . . . . . . . . . . . . . 19 {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} = {𝑢 ∈ Word (Vtx‘𝐺) ∣ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢}
4645cshwshash 16417 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) → ((♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥) ∨ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1))
4746adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → ((♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥) ∨ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1))
4847orcomd 868 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → ((♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1 ∨ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥)))
49 fveqeq2 6652 . . . . . . . . . . . . . . . . . 18 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ↔ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1))
50 fveqeq2 6652 . . . . . . . . . . . . . . . . . 18 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = (♯‘𝑥) ↔ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥)))
5149, 50orbi12d 916 . . . . . . . . . . . . . . . . 17 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)) ↔ ((♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1 ∨ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥))))
5251adantl 485 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → (((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)) ↔ ((♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1 ∨ (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥))))
5348, 52mpbird 260 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)))
5453ex 416 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥))))
5554ex 416 . . . . . . . . . . . . 13 (𝑥 ∈ Word (Vtx‘𝐺) → ((♯‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)))))
5655adantr 484 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → ((♯‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)))))
57 eleq1 2899 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑥) → (𝑁 ∈ ℙ ↔ (♯‘𝑥) ∈ ℙ))
58 oveq2 7138 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (♯‘𝑥) → (0..^𝑁) = (0..^(♯‘𝑥)))
5958rexeqdv 3397 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑥) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
6059rabbidv 3457 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)})
6160eqeq2d 2832 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}))
62 eqeq2 2833 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → ((♯‘𝑈) = 𝑁 ↔ (♯‘𝑈) = (♯‘𝑥)))
6362orbi2d 913 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁) ↔ ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥))))
6461, 63imbi12d 348 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑥) → ((𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)) ↔ (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥)))))
6557, 64imbi12d 348 . . . . . . . . . . . . . 14 (𝑁 = (♯‘𝑥) → ((𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))) ↔ ((♯‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥))))))
6665eqcoms 2829 . . . . . . . . . . . . 13 ((♯‘𝑥) = 𝑁 → ((𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))) ↔ ((♯‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥))))))
6766adantl 485 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → ((𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))) ↔ ((♯‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = (♯‘𝑥))))))
6856, 67mpbird 260 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))))
6929, 68syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))))
7069, 1eleq2s 2930 . . . . . . . . 9 (𝑥𝑊 → (𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))))
7170impcom 411 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
7236, 71sylbid 243 . . . . . . 7 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
7313, 72sylbid 243 . . . . . 6 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
7473rexlimdva 3270 . . . . 5 (𝑁 ∈ ℙ → (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
7574com12 32 . . . 4 (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑁 ∈ ℙ → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
763, 75syl6bi 256 . . 3 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) → (𝑁 ∈ ℙ → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))))
7776pm2.43i 52 . 2 (𝑈 ∈ (𝑊 / ) → (𝑁 ∈ ℙ → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁)))
7877impcom 411 1 ((𝑁 ∈ ℙ ∧ 𝑈 ∈ (𝑊 / )) → ((♯‘𝑈) = 1 ∨ (♯‘𝑈) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wne 3007  wrex 3127  {crab 3130  c0 4266  {copab 5101  cfv 6328  (class class class)co 7130   / cqs 8263  0cc0 10514  1c1 10515  cn 11615  0cn0 11875  ...cfz 12875  ..^cfzo 13016  chash 13674  Word cword 13845   cyclShift ccsh 14129  cprime 15992  Vtxcvtx 26768   ClWWalksN cclwwlkn 27788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-ec 8266  df-qs 8270  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-inf 8883  df-oi 8950  df-dju 9306  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-rp 12368  df-ico 12722  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-hash 13675  df-word 13846  df-lsw 13894  df-concat 13902  df-substr 13982  df-pfx 14012  df-reps 14110  df-csh 14130  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-sum 15022  df-dvds 15587  df-gcd 15821  df-prm 15993  df-phi 16080  df-clwwlk 27746  df-clwwlkn 27789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator