Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnprod Structured version   Visualization version   GIF version

Theorem dvnprod 45940
Description: The multinomial formula for the 𝑁-th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnprod.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnprod.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnprod.t (𝜑𝑇 ∈ Fin)
dvnprod.h ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
dvnprod.n (𝜑𝑁 ∈ ℕ0)
dvnprod.dvnh ((𝜑𝑡𝑇𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑘):𝑋⟶ℂ)
dvnprod.f 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
dvnprod.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
Assertion
Ref Expression
dvnprod (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Distinct variable groups:   𝐶,𝑐   𝐻,𝑐,𝑛,𝑡,𝑥   𝑘,𝐻,𝑛,𝑡,𝑥   𝑁,𝑐,𝑛,𝑡,𝑥   𝑘,𝑁   𝑆,𝑐,𝑛,𝑡,𝑥   𝑆,𝑘   𝑇,𝑐,𝑛,𝑡,𝑥   𝑇,𝑘   𝑘,𝑋,𝑛,𝑡,𝑥   𝜑,𝑘,𝑛,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑥,𝑡,𝑘,𝑛)   𝐹(𝑥,𝑡,𝑘,𝑛,𝑐)   𝑋(𝑐)

Proof of Theorem dvnprod
Dummy variables 𝑒 𝑠 𝑟 𝑑 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvnprod.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvnprod.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 dvnprod.t . . 3 (𝜑𝑇 ∈ Fin)
4 dvnprod.h . . 3 ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
5 dvnprod.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 dvnprod.dvnh . . 3 ((𝜑𝑡𝑇𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑘):𝑋⟶ℂ)
7 dvnprod.f . . 3 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
8 fveq2 6840 . . . . . . . . . . 11 (𝑢 = 𝑡 → (𝑑𝑢) = (𝑑𝑡))
98cbvsumv 15638 . . . . . . . . . 10 Σ𝑢𝑟 (𝑑𝑢) = Σ𝑡𝑟 (𝑑𝑡)
109eqeq1i 2734 . . . . . . . . 9 𝑢𝑟 (𝑑𝑢) = 𝑚 ↔ Σ𝑡𝑟 (𝑑𝑡) = 𝑚)
1110rabbii 3408 . . . . . . . 8 {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚} = {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑑𝑡) = 𝑚}
12 fveq1 6839 . . . . . . . . . . 11 (𝑑 = 𝑒 → (𝑑𝑡) = (𝑒𝑡))
1312sumeq2sdv 15645 . . . . . . . . . 10 (𝑑 = 𝑒 → Σ𝑡𝑟 (𝑑𝑡) = Σ𝑡𝑟 (𝑒𝑡))
1413eqeq1d 2731 . . . . . . . . 9 (𝑑 = 𝑒 → (Σ𝑡𝑟 (𝑑𝑡) = 𝑚 ↔ Σ𝑡𝑟 (𝑒𝑡) = 𝑚))
1514cbvrabv 3413 . . . . . . . 8 {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑑𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}
1611, 15eqtri 2752 . . . . . . 7 {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}
1716mpteq2i 5198 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚}) = (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚})
18 eqeq2 2741 . . . . . . . . 9 (𝑚 = 𝑛 → (Σ𝑡𝑟 (𝑒𝑡) = 𝑚 ↔ Σ𝑡𝑟 (𝑒𝑡) = 𝑛))
1918rabbidv 3410 . . . . . . . 8 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
20 oveq2 7377 . . . . . . . . . 10 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
2120oveq1d 7384 . . . . . . . . 9 (𝑚 = 𝑛 → ((0...𝑚) ↑m 𝑟) = ((0...𝑛) ↑m 𝑟))
22 rabeq 3417 . . . . . . . . 9 (((0...𝑚) ↑m 𝑟) = ((0...𝑛) ↑m 𝑟) → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2321, 22syl 17 . . . . . . . 8 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2419, 23eqtrd 2764 . . . . . . 7 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2524cbvmptv 5206 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2617, 25eqtri 2752 . . . . 5 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2726mpteq2i 5198 . . . 4 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚})) = (𝑟 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛}))
28 sumeq1 15631 . . . . . . . . 9 (𝑟 = 𝑠 → Σ𝑡𝑟 (𝑒𝑡) = Σ𝑡𝑠 (𝑒𝑡))
2928eqeq1d 2731 . . . . . . . 8 (𝑟 = 𝑠 → (Σ𝑡𝑟 (𝑒𝑡) = 𝑛 ↔ Σ𝑡𝑠 (𝑒𝑡) = 𝑛))
3029rabbidv 3410 . . . . . . 7 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
31 oveq2 7377 . . . . . . . 8 (𝑟 = 𝑠 → ((0...𝑛) ↑m 𝑟) = ((0...𝑛) ↑m 𝑠))
32 rabeq 3417 . . . . . . . 8 (((0...𝑛) ↑m 𝑟) = ((0...𝑛) ↑m 𝑠) → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3331, 32syl 17 . . . . . . 7 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3430, 33eqtrd 2764 . . . . . 6 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3534mpteq2dv 5196 . . . . 5 (𝑟 = 𝑠 → (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
3635cbvmptv 5206 . . . 4 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})) = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
3727, 36eqtri 2752 . . 3 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚})) = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
38 dvnprod.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
39 fveq1 6839 . . . . . . . 8 (𝑐 = 𝑒 → (𝑐𝑡) = (𝑒𝑡))
4039sumeq2sdv 15645 . . . . . . 7 (𝑐 = 𝑒 → Σ𝑡𝑇 (𝑐𝑡) = Σ𝑡𝑇 (𝑒𝑡))
4140eqeq1d 2731 . . . . . 6 (𝑐 = 𝑒 → (Σ𝑡𝑇 (𝑐𝑡) = 𝑛 ↔ Σ𝑡𝑇 (𝑒𝑡) = 𝑛))
4241cbvrabv 3413 . . . . 5 {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛}
4342mpteq2i 5198 . . . 4 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛})
4438, 43eqtri 2752 . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛})
451, 2, 3, 4, 5, 6, 7, 37, 44dvnprodlem3 45939 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))))
46 fveq1 6839 . . . . . . . . . 10 (𝑒 = 𝑐 → (𝑒𝑡) = (𝑐𝑡))
4746fveq2d 6844 . . . . . . . . 9 (𝑒 = 𝑐 → (!‘(𝑒𝑡)) = (!‘(𝑐𝑡)))
4847prodeq2ad 45583 . . . . . . . 8 (𝑒 = 𝑐 → ∏𝑡𝑇 (!‘(𝑒𝑡)) = ∏𝑡𝑇 (!‘(𝑐𝑡)))
4948oveq2d 7385 . . . . . . 7 (𝑒 = 𝑐 → ((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) = ((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))))
5046fveq2d 6844 . . . . . . . . 9 (𝑒 = 𝑐 → ((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡)) = ((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡)))
5150fveq1d 6842 . . . . . . . 8 (𝑒 = 𝑐 → (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5251prodeq2ad 45583 . . . . . . 7 (𝑒 = 𝑐 → ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥) = ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5349, 52oveq12d 7387 . . . . . 6 (𝑒 = 𝑐 → (((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = (((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
5453cbvsumv 15638 . . . . 5 Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
55 eqid 2729 . . . . 5 Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5654, 55eqtri 2752 . . . 4 Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5756mpteq2i 5198 . . 3 (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
5857a1i 11 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
5945, 58eqtrd 2764 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  𝒫 cpw 4559  {cpr 4587  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  cc 11042  cr 11043  0cc0 11044   · cmul 11049   / cdiv 11811  0cn0 12418  ...cfz 13444  !cfa 14214  Σcsu 15628  cprod 15845  t crest 17359  TopOpenctopn 17360  fldccnfld 21296   D𝑛 cdvn 25798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-prod 15846  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-dvn 25802
This theorem is referenced by:  etransclem29  46254
  Copyright terms: Public domain W3C validator