Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnprod Structured version   Visualization version   GIF version

Theorem dvnprod 42521
Description: The multinomial formula for the 𝑁-th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnprod.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnprod.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnprod.t (𝜑𝑇 ∈ Fin)
dvnprod.h ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
dvnprod.n (𝜑𝑁 ∈ ℕ0)
dvnprod.dvnh ((𝜑𝑡𝑇𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑘):𝑋⟶ℂ)
dvnprod.f 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
dvnprod.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
Assertion
Ref Expression
dvnprod (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Distinct variable groups:   𝐶,𝑐   𝐻,𝑐,𝑛,𝑡,𝑥   𝑘,𝐻,𝑛,𝑡,𝑥   𝑁,𝑐,𝑛,𝑡,𝑥   𝑘,𝑁   𝑆,𝑐,𝑛,𝑡,𝑥   𝑆,𝑘   𝑇,𝑐,𝑛,𝑡,𝑥   𝑇,𝑘   𝑘,𝑋,𝑛,𝑡,𝑥   𝜑,𝑘,𝑛,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑥,𝑡,𝑘,𝑛)   𝐹(𝑥,𝑡,𝑘,𝑛,𝑐)   𝑋(𝑐)

Proof of Theorem dvnprod
Dummy variables 𝑒 𝑠 𝑟 𝑑 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvnprod.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvnprod.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 dvnprod.t . . 3 (𝜑𝑇 ∈ Fin)
4 dvnprod.h . . 3 ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
5 dvnprod.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 dvnprod.dvnh . . 3 ((𝜑𝑡𝑇𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑘):𝑋⟶ℂ)
7 dvnprod.f . . 3 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
8 fveq2 6661 . . . . . . . . . . 11 (𝑢 = 𝑡 → (𝑑𝑢) = (𝑑𝑡))
98cbvsumv 15053 . . . . . . . . . 10 Σ𝑢𝑟 (𝑑𝑢) = Σ𝑡𝑟 (𝑑𝑡)
109eqeq1i 2829 . . . . . . . . 9 𝑢𝑟 (𝑑𝑢) = 𝑚 ↔ Σ𝑡𝑟 (𝑑𝑡) = 𝑚)
1110rabbii 3458 . . . . . . . 8 {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚} = {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑑𝑡) = 𝑚}
12 fveq1 6660 . . . . . . . . . . 11 (𝑑 = 𝑒 → (𝑑𝑡) = (𝑒𝑡))
1312sumeq2sdv 15061 . . . . . . . . . 10 (𝑑 = 𝑒 → Σ𝑡𝑟 (𝑑𝑡) = Σ𝑡𝑟 (𝑒𝑡))
1413eqeq1d 2826 . . . . . . . . 9 (𝑑 = 𝑒 → (Σ𝑡𝑟 (𝑑𝑡) = 𝑚 ↔ Σ𝑡𝑟 (𝑒𝑡) = 𝑚))
1514cbvrabv 3477 . . . . . . . 8 {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑑𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}
1611, 15eqtri 2847 . . . . . . 7 {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}
1716mpteq2i 5144 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚}) = (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚})
18 eqeq2 2836 . . . . . . . . 9 (𝑚 = 𝑛 → (Σ𝑡𝑟 (𝑒𝑡) = 𝑚 ↔ Σ𝑡𝑟 (𝑒𝑡) = 𝑛))
1918rabbidv 3465 . . . . . . . 8 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
20 oveq2 7157 . . . . . . . . . 10 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
2120oveq1d 7164 . . . . . . . . 9 (𝑚 = 𝑛 → ((0...𝑚) ↑m 𝑟) = ((0...𝑛) ↑m 𝑟))
22 rabeq 3469 . . . . . . . . 9 (((0...𝑚) ↑m 𝑟) = ((0...𝑛) ↑m 𝑟) → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2321, 22syl 17 . . . . . . . 8 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2419, 23eqtrd 2859 . . . . . . 7 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2524cbvmptv 5155 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2617, 25eqtri 2847 . . . . 5 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2726mpteq2i 5144 . . . 4 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚})) = (𝑟 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛}))
28 sumeq1 15045 . . . . . . . . 9 (𝑟 = 𝑠 → Σ𝑡𝑟 (𝑒𝑡) = Σ𝑡𝑠 (𝑒𝑡))
2928eqeq1d 2826 . . . . . . . 8 (𝑟 = 𝑠 → (Σ𝑡𝑟 (𝑒𝑡) = 𝑛 ↔ Σ𝑡𝑠 (𝑒𝑡) = 𝑛))
3029rabbidv 3465 . . . . . . 7 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
31 oveq2 7157 . . . . . . . 8 (𝑟 = 𝑠 → ((0...𝑛) ↑m 𝑟) = ((0...𝑛) ↑m 𝑠))
32 rabeq 3469 . . . . . . . 8 (((0...𝑛) ↑m 𝑟) = ((0...𝑛) ↑m 𝑠) → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3331, 32syl 17 . . . . . . 7 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3430, 33eqtrd 2859 . . . . . 6 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3534mpteq2dv 5148 . . . . 5 (𝑟 = 𝑠 → (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
3635cbvmptv 5155 . . . 4 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})) = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
3727, 36eqtri 2847 . . 3 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚})) = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
38 dvnprod.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
39 fveq1 6660 . . . . . . . 8 (𝑐 = 𝑒 → (𝑐𝑡) = (𝑒𝑡))
4039sumeq2sdv 15061 . . . . . . 7 (𝑐 = 𝑒 → Σ𝑡𝑇 (𝑐𝑡) = Σ𝑡𝑇 (𝑒𝑡))
4140eqeq1d 2826 . . . . . 6 (𝑐 = 𝑒 → (Σ𝑡𝑇 (𝑐𝑡) = 𝑛 ↔ Σ𝑡𝑇 (𝑒𝑡) = 𝑛))
4241cbvrabv 3477 . . . . 5 {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛}
4342mpteq2i 5144 . . . 4 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛})
4438, 43eqtri 2847 . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛})
451, 2, 3, 4, 5, 6, 7, 37, 44dvnprodlem3 42520 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))))
46 fveq1 6660 . . . . . . . . . 10 (𝑒 = 𝑐 → (𝑒𝑡) = (𝑐𝑡))
4746fveq2d 6665 . . . . . . . . 9 (𝑒 = 𝑐 → (!‘(𝑒𝑡)) = (!‘(𝑐𝑡)))
4847prodeq2ad 42164 . . . . . . . 8 (𝑒 = 𝑐 → ∏𝑡𝑇 (!‘(𝑒𝑡)) = ∏𝑡𝑇 (!‘(𝑐𝑡)))
4948oveq2d 7165 . . . . . . 7 (𝑒 = 𝑐 → ((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) = ((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))))
5046fveq2d 6665 . . . . . . . . 9 (𝑒 = 𝑐 → ((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡)) = ((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡)))
5150fveq1d 6663 . . . . . . . 8 (𝑒 = 𝑐 → (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5251prodeq2ad 42164 . . . . . . 7 (𝑒 = 𝑐 → ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥) = ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5349, 52oveq12d 7167 . . . . . 6 (𝑒 = 𝑐 → (((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = (((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
5453cbvsumv 15053 . . . . 5 Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
55 eqid 2824 . . . . 5 Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5654, 55eqtri 2847 . . . 4 Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5756mpteq2i 5144 . . 3 (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
5857a1i 11 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
5945, 58eqtrd 2859 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  {crab 3137  𝒫 cpw 4522  {cpr 4552  cmpt 5132  wf 6339  cfv 6343  (class class class)co 7149  m cmap 8402  Fincfn 8505  cc 10533  cr 10534  0cc0 10535   · cmul 10540   / cdiv 11295  0cn0 11894  ...cfz 12894  !cfa 13638  Σcsu 15042  cprod 15259  t crest 16694  TopOpenctopn 16695  fldccnfld 20098   D𝑛 cdvn 24473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-fac 13639  df-bc 13668  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-prod 15260  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20090  df-xmet 20091  df-met 20092  df-bl 20093  df-mopn 20094  df-fbas 20095  df-fg 20096  df-cnfld 20099  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24475  df-dv 24476  df-dvn 24477
This theorem is referenced by:  etransclem29  42835
  Copyright terms: Public domain W3C validator