Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnprod Structured version   Visualization version   GIF version

Theorem dvnprod 44180
Description: The multinomial formula for the 𝑁-th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnprod.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnprod.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnprod.t (𝜑𝑇 ∈ Fin)
dvnprod.h ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
dvnprod.n (𝜑𝑁 ∈ ℕ0)
dvnprod.dvnh ((𝜑𝑡𝑇𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑘):𝑋⟶ℂ)
dvnprod.f 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
dvnprod.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
Assertion
Ref Expression
dvnprod (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Distinct variable groups:   𝐶,𝑐   𝐻,𝑐,𝑛,𝑡,𝑥   𝑘,𝐻,𝑛,𝑡,𝑥   𝑁,𝑐,𝑛,𝑡,𝑥   𝑘,𝑁   𝑆,𝑐,𝑛,𝑡,𝑥   𝑆,𝑘   𝑇,𝑐,𝑛,𝑡,𝑥   𝑇,𝑘   𝑘,𝑋,𝑛,𝑡,𝑥   𝜑,𝑘,𝑛,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑥,𝑡,𝑘,𝑛)   𝐹(𝑥,𝑡,𝑘,𝑛,𝑐)   𝑋(𝑐)

Proof of Theorem dvnprod
Dummy variables 𝑒 𝑠 𝑟 𝑑 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvnprod.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvnprod.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 dvnprod.t . . 3 (𝜑𝑇 ∈ Fin)
4 dvnprod.h . . 3 ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
5 dvnprod.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 dvnprod.dvnh . . 3 ((𝜑𝑡𝑇𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑘):𝑋⟶ℂ)
7 dvnprod.f . . 3 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
8 fveq2 6842 . . . . . . . . . . 11 (𝑢 = 𝑡 → (𝑑𝑢) = (𝑑𝑡))
98cbvsumv 15581 . . . . . . . . . 10 Σ𝑢𝑟 (𝑑𝑢) = Σ𝑡𝑟 (𝑑𝑡)
109eqeq1i 2741 . . . . . . . . 9 𝑢𝑟 (𝑑𝑢) = 𝑚 ↔ Σ𝑡𝑟 (𝑑𝑡) = 𝑚)
1110rabbii 3413 . . . . . . . 8 {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚} = {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑑𝑡) = 𝑚}
12 fveq1 6841 . . . . . . . . . . 11 (𝑑 = 𝑒 → (𝑑𝑡) = (𝑒𝑡))
1312sumeq2sdv 15589 . . . . . . . . . 10 (𝑑 = 𝑒 → Σ𝑡𝑟 (𝑑𝑡) = Σ𝑡𝑟 (𝑒𝑡))
1413eqeq1d 2738 . . . . . . . . 9 (𝑑 = 𝑒 → (Σ𝑡𝑟 (𝑑𝑡) = 𝑚 ↔ Σ𝑡𝑟 (𝑒𝑡) = 𝑚))
1514cbvrabv 3417 . . . . . . . 8 {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑑𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}
1611, 15eqtri 2764 . . . . . . 7 {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}
1716mpteq2i 5210 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚}) = (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚})
18 eqeq2 2748 . . . . . . . . 9 (𝑚 = 𝑛 → (Σ𝑡𝑟 (𝑒𝑡) = 𝑚 ↔ Σ𝑡𝑟 (𝑒𝑡) = 𝑛))
1918rabbidv 3415 . . . . . . . 8 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
20 oveq2 7365 . . . . . . . . . 10 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
2120oveq1d 7372 . . . . . . . . 9 (𝑚 = 𝑛 → ((0...𝑚) ↑m 𝑟) = ((0...𝑛) ↑m 𝑟))
22 rabeq 3421 . . . . . . . . 9 (((0...𝑚) ↑m 𝑟) = ((0...𝑛) ↑m 𝑟) → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2321, 22syl 17 . . . . . . . 8 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2419, 23eqtrd 2776 . . . . . . 7 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2524cbvmptv 5218 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2617, 25eqtri 2764 . . . . 5 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2726mpteq2i 5210 . . . 4 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚})) = (𝑟 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛}))
28 sumeq1 15573 . . . . . . . . 9 (𝑟 = 𝑠 → Σ𝑡𝑟 (𝑒𝑡) = Σ𝑡𝑠 (𝑒𝑡))
2928eqeq1d 2738 . . . . . . . 8 (𝑟 = 𝑠 → (Σ𝑡𝑟 (𝑒𝑡) = 𝑛 ↔ Σ𝑡𝑠 (𝑒𝑡) = 𝑛))
3029rabbidv 3415 . . . . . . 7 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
31 oveq2 7365 . . . . . . . 8 (𝑟 = 𝑠 → ((0...𝑛) ↑m 𝑟) = ((0...𝑛) ↑m 𝑠))
32 rabeq 3421 . . . . . . . 8 (((0...𝑛) ↑m 𝑟) = ((0...𝑛) ↑m 𝑠) → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3331, 32syl 17 . . . . . . 7 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3430, 33eqtrd 2776 . . . . . 6 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3534mpteq2dv 5207 . . . . 5 (𝑟 = 𝑠 → (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
3635cbvmptv 5218 . . . 4 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})) = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
3727, 36eqtri 2764 . . 3 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚})) = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
38 dvnprod.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
39 fveq1 6841 . . . . . . . 8 (𝑐 = 𝑒 → (𝑐𝑡) = (𝑒𝑡))
4039sumeq2sdv 15589 . . . . . . 7 (𝑐 = 𝑒 → Σ𝑡𝑇 (𝑐𝑡) = Σ𝑡𝑇 (𝑒𝑡))
4140eqeq1d 2738 . . . . . 6 (𝑐 = 𝑒 → (Σ𝑡𝑇 (𝑐𝑡) = 𝑛 ↔ Σ𝑡𝑇 (𝑒𝑡) = 𝑛))
4241cbvrabv 3417 . . . . 5 {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛}
4342mpteq2i 5210 . . . 4 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛})
4438, 43eqtri 2764 . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛})
451, 2, 3, 4, 5, 6, 7, 37, 44dvnprodlem3 44179 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))))
46 fveq1 6841 . . . . . . . . . 10 (𝑒 = 𝑐 → (𝑒𝑡) = (𝑐𝑡))
4746fveq2d 6846 . . . . . . . . 9 (𝑒 = 𝑐 → (!‘(𝑒𝑡)) = (!‘(𝑐𝑡)))
4847prodeq2ad 43823 . . . . . . . 8 (𝑒 = 𝑐 → ∏𝑡𝑇 (!‘(𝑒𝑡)) = ∏𝑡𝑇 (!‘(𝑐𝑡)))
4948oveq2d 7373 . . . . . . 7 (𝑒 = 𝑐 → ((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) = ((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))))
5046fveq2d 6846 . . . . . . . . 9 (𝑒 = 𝑐 → ((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡)) = ((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡)))
5150fveq1d 6844 . . . . . . . 8 (𝑒 = 𝑐 → (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5251prodeq2ad 43823 . . . . . . 7 (𝑒 = 𝑐 → ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥) = ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5349, 52oveq12d 7375 . . . . . 6 (𝑒 = 𝑐 → (((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = (((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
5453cbvsumv 15581 . . . . 5 Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
55 eqid 2736 . . . . 5 Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5654, 55eqtri 2764 . . . 4 Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5756mpteq2i 5210 . . 3 (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
5857a1i 11 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
5945, 58eqtrd 2776 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {crab 3407  𝒫 cpw 4560  {cpr 4588  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  cc 11049  cr 11050  0cc0 11051   · cmul 11056   / cdiv 11812  0cn0 12413  ...cfz 13424  !cfa 14173  Σcsu 15570  cprod 15788  t crest 17302  TopOpenctopn 17303  fldccnfld 20796   D𝑛 cdvn 25228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-prod 15789  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-dvn 25232
This theorem is referenced by:  etransclem29  44494
  Copyright terms: Public domain W3C validator