| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgsucmpt | Structured version Visualization version GIF version | ||
| Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by Mario Carneiro, 9-Sep-2013.) |
| Ref | Expression |
|---|---|
| rdgsucmpt.1 | ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| rdgsucmpt.2 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rdgsucmpt | ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2893 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2893 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfcv 2893 | . 2 ⊢ Ⅎ𝑥𝐷 | |
| 4 | rdgsucmpt.1 | . 2 ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | |
| 5 | rdgsucmpt.2 | . 2 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
| 6 | 1, 2, 3, 4, 5 | rdgsucmptf 8405 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ↦ cmpt 5196 Oncon0 6340 suc csuc 6342 ‘cfv 6519 reccrdg 8386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 |
| This theorem is referenced by: precsexlem3 28118 |
| Copyright terms: Public domain | W3C validator |