Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reltsubadd2 Structured version   Visualization version   GIF version

Theorem reltsubadd2 42370
Description: 'Less than' relationship between addition and subtraction. Compare ltsubadd2 11655. (Contributed by SN, 13-Feb-2024.)
Assertion
Ref Expression
reltsubadd2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) < 𝐶𝐴 < (𝐵 + 𝐶)))

Proof of Theorem reltsubadd2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
2 readdcl 11157 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
323adant1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
4 simp2 1137 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
5 reltsub1 42369 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐵 + 𝐶) ↔ (𝐴 𝐵) < ((𝐵 + 𝐶) − 𝐵)))
61, 3, 4, 5syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < (𝐵 + 𝐶) ↔ (𝐴 𝐵) < ((𝐵 + 𝐶) − 𝐵)))
7 repncan2 42365 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) − 𝐵) = 𝐶)
873adant1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) − 𝐵) = 𝐶)
98breq2d 5121 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) < ((𝐵 + 𝐶) − 𝐵) ↔ (𝐴 𝐵) < 𝐶))
106, 9bitr2d 280 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) < 𝐶𝐴 < (𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5109  (class class class)co 7389  cr 11073   + caddc 11077   < clt 11214   cresub 42348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-resscn 11131  ax-addrcl 11135  ax-addass 11139  ax-rnegex 11145  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-ltxr 11219  df-resub 42349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator