Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reltsub1 Structured version   Visualization version   GIF version

Theorem reltsub1 41561
Description: Subtraction from both sides of 'less than'. Compare ltsub1 11714. (Contributed by SN, 13-Feb-2024.)
Assertion
Ref Expression
reltsub1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 𝐶) < (𝐵 𝐶)))

Proof of Theorem reltsub1
StepHypRef Expression
1 rersubcl 41553 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 𝐶) ∈ ℝ)
213adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 𝐶) ∈ ℝ)
3 rersubcl 41553 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 𝐶) ∈ ℝ)
433adant1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 𝐶) ∈ ℝ)
5 simp3 1138 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
62, 4, 5ltadd2d 11374 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐶) < (𝐵 𝐶) ↔ (𝐶 + (𝐴 𝐶)) < (𝐶 + (𝐵 𝐶))))
7 repncan3 41558 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 + (𝐴 𝐶)) = 𝐴)
87ancoms 459 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐴 𝐶)) = 𝐴)
983adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐴 𝐶)) = 𝐴)
10 repncan3 41558 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + (𝐵 𝐶)) = 𝐵)
1110ancoms 459 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐵 𝐶)) = 𝐵)
12113adant1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐵 𝐶)) = 𝐵)
139, 12breq12d 5161 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + (𝐴 𝐶)) < (𝐶 + (𝐵 𝐶)) ↔ 𝐴 < 𝐵))
146, 13bitr2d 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 𝐶) < (𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5148  (class class class)co 7411  cr 11111   + caddc 11115   < clt 11252   cresub 41540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-addrcl 11173  ax-addass 11177  ax-rnegex 11183  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-resub 41541
This theorem is referenced by:  reltsubadd2  41562  reposdif  41618  relt0neg2  41620
  Copyright terms: Public domain W3C validator