Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubcan2 Structured version   Visualization version   GIF version

Theorem resubcan2 42418
Description: Cancellation law for real subtraction. Compare subcan2 11534. (Contributed by Steven Nguyen, 8-Jan-2023.)
Assertion
Ref Expression
resubcan2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem resubcan2
StepHypRef Expression
1 simpr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 𝐶) = (𝐵 𝐶)) → (𝐴 𝐶) = (𝐵 𝐶))
2 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 𝐶) = (𝐵 𝐶)) → 𝐴 ∈ ℝ)
3 simpl3 1194 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 𝐶) = (𝐵 𝐶)) → 𝐶 ∈ ℝ)
4 simpl2 1193 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 𝐶) = (𝐵 𝐶)) → 𝐵 ∈ ℝ)
5 rersubcl 42408 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 𝐶) ∈ ℝ)
64, 3, 5syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 𝐶) = (𝐵 𝐶)) → (𝐵 𝐶) ∈ ℝ)
72, 3, 6resubaddd 42410 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 𝐶) = (𝐵 𝐶)) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ (𝐶 + (𝐵 𝐶)) = 𝐴))
81, 7mpbid 232 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 𝐶) = (𝐵 𝐶)) → (𝐶 + (𝐵 𝐶)) = 𝐴)
9 repncan3 42413 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + (𝐵 𝐶)) = 𝐵)
103, 4, 9syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 𝐶) = (𝐵 𝐶)) → (𝐶 + (𝐵 𝐶)) = 𝐵)
118, 10eqtr3d 2779 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 𝐶) = (𝐵 𝐶)) → 𝐴 = 𝐵)
1211ex 412 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐶) = (𝐵 𝐶) → 𝐴 = 𝐵))
13 oveq1 7438 . 2 (𝐴 = 𝐵 → (𝐴 𝐶) = (𝐵 𝐶))
1412, 13impbid1 225 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  (class class class)co 7431  cr 11154   + caddc 11158   cresub 42395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-addrcl 11216  ax-addass 11220  ax-rnegex 11226  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-resub 42396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator