![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubcan2 | Structured version Visualization version GIF version |
Description: Cancellation law for real subtraction. Compare subcan2 11481. (Contributed by Steven Nguyen, 8-Jan-2023.) |
Ref | Expression |
---|---|
resubcan2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) | |
2 | simpl1 1192 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → 𝐴 ∈ ℝ) | |
3 | simpl3 1194 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → 𝐶 ∈ ℝ) | |
4 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → 𝐵 ∈ ℝ) | |
5 | rersubcl 41195 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 −ℝ 𝐶) ∈ ℝ) | |
6 | 4, 3, 5 | syl2anc 585 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → (𝐵 −ℝ 𝐶) ∈ ℝ) |
7 | 2, 3, 6 | resubaddd 41197 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) ↔ (𝐶 + (𝐵 −ℝ 𝐶)) = 𝐴)) |
8 | 1, 7 | mpbid 231 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → (𝐶 + (𝐵 −ℝ 𝐶)) = 𝐴) |
9 | repncan3 41200 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + (𝐵 −ℝ 𝐶)) = 𝐵) | |
10 | 3, 4, 9 | syl2anc 585 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → (𝐶 + (𝐵 −ℝ 𝐶)) = 𝐵) |
11 | 8, 10 | eqtr3d 2775 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → 𝐴 = 𝐵) |
12 | 11 | ex 414 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) → 𝐴 = 𝐵)) |
13 | oveq1 7411 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) | |
14 | 12, 13 | impbid1 224 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 (class class class)co 7404 ℝcr 11105 + caddc 11109 −ℝ cresub 41182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-resscn 11163 ax-addrcl 11167 ax-addass 11171 ax-rnegex 11177 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-resub 41183 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |