Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubidaddid1lem | Structured version Visualization version GIF version |
Description: Lemma for resubidaddid1 40378. A special case of npncan 11242. (Contributed by Steven Nguyen, 8-Jan-2023.) |
Ref | Expression |
---|---|
resubidaddid1lem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resubidaddid1lem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
resubidaddid1lem.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
resubidaddid1lem.1 | ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) |
Ref | Expression |
---|---|
resubidaddid1lem | ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubidaddid1lem.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | resubidaddid1lem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | resubidaddid1lem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | rersubcl 40361 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) ∈ ℝ) | |
5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) ∈ ℝ) |
6 | rersubcl 40361 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 −ℝ 𝐶) ∈ ℝ) | |
7 | 3, 1, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) ∈ ℝ) |
8 | 5, 7 | readdcld 11004 | . 2 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) ∈ ℝ) |
9 | resubidaddid1lem.1 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) | |
10 | 9 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) = (𝐴 −ℝ 𝐵)) |
11 | 3, 1, 5 | resubaddd 40363 | . . . . 5 ⊢ (𝜑 → ((𝐵 −ℝ 𝐶) = (𝐴 −ℝ 𝐵) ↔ (𝐶 + (𝐴 −ℝ 𝐵)) = 𝐵)) |
12 | 10, 11 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐶 + (𝐴 −ℝ 𝐵)) = 𝐵) |
13 | 12 | oveq1d 7290 | . . 3 ⊢ (𝜑 → ((𝐶 + (𝐴 −ℝ 𝐵)) + (𝐵 −ℝ 𝐶)) = (𝐵 + (𝐵 −ℝ 𝐶))) |
14 | 1 | recnd 11003 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
15 | 5 | recnd 11003 | . . . 4 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) ∈ ℂ) |
16 | 7 | recnd 11003 | . . . 4 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) ∈ ℂ) |
17 | 14, 15, 16 | addassd 10997 | . . 3 ⊢ (𝜑 → ((𝐶 + (𝐴 −ℝ 𝐵)) + (𝐵 −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)))) |
18 | 2, 3, 7 | resubaddd 40363 | . . . 4 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶) ↔ (𝐵 + (𝐵 −ℝ 𝐶)) = 𝐴)) |
19 | 9, 18 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐵 + (𝐵 −ℝ 𝐶)) = 𝐴) |
20 | 13, 17, 19 | 3eqtr3d 2786 | . 2 ⊢ (𝜑 → (𝐶 + ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶))) = 𝐴) |
21 | 1, 8, 20 | reladdrsub 40368 | 1 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 + caddc 10874 −ℝ cresub 40348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-addrcl 10932 ax-addass 10936 ax-rnegex 10942 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-resub 40349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |