![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubidaddlidlem | Structured version Visualization version GIF version |
Description: Lemma for resubidaddlid 41571. A special case of npncan 11486. (Contributed by Steven Nguyen, 8-Jan-2023.) |
Ref | Expression |
---|---|
resubidaddridlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resubidaddridlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
resubidaddridlem.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
resubidaddridlem.1 | ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) |
Ref | Expression |
---|---|
resubidaddlidlem | ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubidaddridlem.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | resubidaddridlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | resubidaddridlem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | rersubcl 41554 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) ∈ ℝ) | |
5 | 2, 3, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) ∈ ℝ) |
6 | rersubcl 41554 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 −ℝ 𝐶) ∈ ℝ) | |
7 | 3, 1, 6 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) ∈ ℝ) |
8 | 5, 7 | readdcld 11248 | . 2 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) ∈ ℝ) |
9 | resubidaddridlem.1 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) | |
10 | 9 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) = (𝐴 −ℝ 𝐵)) |
11 | 3, 1, 5 | resubaddd 41556 | . . . . 5 ⊢ (𝜑 → ((𝐵 −ℝ 𝐶) = (𝐴 −ℝ 𝐵) ↔ (𝐶 + (𝐴 −ℝ 𝐵)) = 𝐵)) |
12 | 10, 11 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐶 + (𝐴 −ℝ 𝐵)) = 𝐵) |
13 | 12 | oveq1d 7427 | . . 3 ⊢ (𝜑 → ((𝐶 + (𝐴 −ℝ 𝐵)) + (𝐵 −ℝ 𝐶)) = (𝐵 + (𝐵 −ℝ 𝐶))) |
14 | 1 | recnd 11247 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
15 | 5 | recnd 11247 | . . . 4 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) ∈ ℂ) |
16 | 7 | recnd 11247 | . . . 4 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) ∈ ℂ) |
17 | 14, 15, 16 | addassd 11241 | . . 3 ⊢ (𝜑 → ((𝐶 + (𝐴 −ℝ 𝐵)) + (𝐵 −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)))) |
18 | 2, 3, 7 | resubaddd 41556 | . . . 4 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶) ↔ (𝐵 + (𝐵 −ℝ 𝐶)) = 𝐴)) |
19 | 9, 18 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐵 + (𝐵 −ℝ 𝐶)) = 𝐴) |
20 | 13, 17, 19 | 3eqtr3d 2779 | . 2 ⊢ (𝜑 → (𝐶 + ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶))) = 𝐴) |
21 | 1, 8, 20 | reladdrsub 41561 | 1 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7412 ℝcr 11113 + caddc 11117 −ℝ cresub 41541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-addrcl 11175 ax-addass 11179 ax-rnegex 11185 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-resub 41542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |