| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resubidaddlidlem | Structured version Visualization version GIF version | ||
| Description: Lemma for resubidaddlid 42427. A special case of npncan 11379. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| Ref | Expression |
|---|---|
| resubidaddridlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resubidaddridlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| resubidaddridlem.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| resubidaddridlem.1 | ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) |
| Ref | Expression |
|---|---|
| resubidaddlidlem | ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubidaddridlem.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 2 | resubidaddridlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | resubidaddridlem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | rersubcl 42410 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) ∈ ℝ) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) ∈ ℝ) |
| 6 | rersubcl 42410 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 −ℝ 𝐶) ∈ ℝ) | |
| 7 | 3, 1, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) ∈ ℝ) |
| 8 | 5, 7 | readdcld 11138 | . 2 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) ∈ ℝ) |
| 9 | resubidaddridlem.1 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) | |
| 10 | 9 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) = (𝐴 −ℝ 𝐵)) |
| 11 | 3, 1, 5 | resubaddd 42412 | . . . . 5 ⊢ (𝜑 → ((𝐵 −ℝ 𝐶) = (𝐴 −ℝ 𝐵) ↔ (𝐶 + (𝐴 −ℝ 𝐵)) = 𝐵)) |
| 12 | 10, 11 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐶 + (𝐴 −ℝ 𝐵)) = 𝐵) |
| 13 | 12 | oveq1d 7361 | . . 3 ⊢ (𝜑 → ((𝐶 + (𝐴 −ℝ 𝐵)) + (𝐵 −ℝ 𝐶)) = (𝐵 + (𝐵 −ℝ 𝐶))) |
| 14 | 1 | recnd 11137 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 15 | 5 | recnd 11137 | . . . 4 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) ∈ ℂ) |
| 16 | 7 | recnd 11137 | . . . 4 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) ∈ ℂ) |
| 17 | 14, 15, 16 | addassd 11131 | . . 3 ⊢ (𝜑 → ((𝐶 + (𝐴 −ℝ 𝐵)) + (𝐵 −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)))) |
| 18 | 2, 3, 7 | resubaddd 42412 | . . . 4 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶) ↔ (𝐵 + (𝐵 −ℝ 𝐶)) = 𝐴)) |
| 19 | 9, 18 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐵 + (𝐵 −ℝ 𝐶)) = 𝐴) |
| 20 | 13, 17, 19 | 3eqtr3d 2774 | . 2 ⊢ (𝜑 → (𝐶 + ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶))) = 𝐴) |
| 21 | 1, 8, 20 | reladdrsub 42417 | 1 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℝcr 11002 + caddc 11006 −ℝ cresub 42397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-addrcl 11064 ax-addass 11068 ax-rnegex 11074 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-resub 42398 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |