Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubidaddlidlem Structured version   Visualization version   GIF version

Theorem resubidaddlidlem 42426
Description: Lemma for resubidaddlid 42427. A special case of npncan 11379. (Contributed by Steven Nguyen, 8-Jan-2023.)
Hypotheses
Ref Expression
resubidaddridlem.a (𝜑𝐴 ∈ ℝ)
resubidaddridlem.b (𝜑𝐵 ∈ ℝ)
resubidaddridlem.c (𝜑𝐶 ∈ ℝ)
resubidaddridlem.1 (𝜑 → (𝐴 𝐵) = (𝐵 𝐶))
Assertion
Ref Expression
resubidaddlidlem (𝜑 → ((𝐴 𝐵) + (𝐵 𝐶)) = (𝐴 𝐶))

Proof of Theorem resubidaddlidlem
StepHypRef Expression
1 resubidaddridlem.c . 2 (𝜑𝐶 ∈ ℝ)
2 resubidaddridlem.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 resubidaddridlem.b . . . 4 (𝜑𝐵 ∈ ℝ)
4 rersubcl 42410 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) ∈ ℝ)
52, 3, 4syl2anc 584 . . 3 (𝜑 → (𝐴 𝐵) ∈ ℝ)
6 rersubcl 42410 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 𝐶) ∈ ℝ)
73, 1, 6syl2anc 584 . . 3 (𝜑 → (𝐵 𝐶) ∈ ℝ)
85, 7readdcld 11138 . 2 (𝜑 → ((𝐴 𝐵) + (𝐵 𝐶)) ∈ ℝ)
9 resubidaddridlem.1 . . . . . 6 (𝜑 → (𝐴 𝐵) = (𝐵 𝐶))
109eqcomd 2737 . . . . 5 (𝜑 → (𝐵 𝐶) = (𝐴 𝐵))
113, 1, 5resubaddd 42412 . . . . 5 (𝜑 → ((𝐵 𝐶) = (𝐴 𝐵) ↔ (𝐶 + (𝐴 𝐵)) = 𝐵))
1210, 11mpbid 232 . . . 4 (𝜑 → (𝐶 + (𝐴 𝐵)) = 𝐵)
1312oveq1d 7361 . . 3 (𝜑 → ((𝐶 + (𝐴 𝐵)) + (𝐵 𝐶)) = (𝐵 + (𝐵 𝐶)))
141recnd 11137 . . . 4 (𝜑𝐶 ∈ ℂ)
155recnd 11137 . . . 4 (𝜑 → (𝐴 𝐵) ∈ ℂ)
167recnd 11137 . . . 4 (𝜑 → (𝐵 𝐶) ∈ ℂ)
1714, 15, 16addassd 11131 . . 3 (𝜑 → ((𝐶 + (𝐴 𝐵)) + (𝐵 𝐶)) = (𝐶 + ((𝐴 𝐵) + (𝐵 𝐶))))
182, 3, 7resubaddd 42412 . . . 4 (𝜑 → ((𝐴 𝐵) = (𝐵 𝐶) ↔ (𝐵 + (𝐵 𝐶)) = 𝐴))
199, 18mpbid 232 . . 3 (𝜑 → (𝐵 + (𝐵 𝐶)) = 𝐴)
2013, 17, 193eqtr3d 2774 . 2 (𝜑 → (𝐶 + ((𝐴 𝐵) + (𝐵 𝐶))) = 𝐴)
211, 8, 20reladdrsub 42417 1 (𝜑 → ((𝐴 𝐵) + (𝐵 𝐶)) = (𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7346  cr 11002   + caddc 11006   cresub 42397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-addrcl 11064  ax-addass 11068  ax-rnegex 11074  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-resub 42398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator