| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resubidaddlidlem | Structured version Visualization version GIF version | ||
| Description: Lemma for resubidaddlid 42390. A special case of npncan 11450. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| Ref | Expression |
|---|---|
| resubidaddridlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resubidaddridlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| resubidaddridlem.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| resubidaddridlem.1 | ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) |
| Ref | Expression |
|---|---|
| resubidaddlidlem | ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubidaddridlem.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 2 | resubidaddridlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | resubidaddridlem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | rersubcl 42373 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) ∈ ℝ) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) ∈ ℝ) |
| 6 | rersubcl 42373 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 −ℝ 𝐶) ∈ ℝ) | |
| 7 | 3, 1, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) ∈ ℝ) |
| 8 | 5, 7 | readdcld 11210 | . 2 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) ∈ ℝ) |
| 9 | resubidaddridlem.1 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) | |
| 10 | 9 | eqcomd 2736 | . . . . 5 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) = (𝐴 −ℝ 𝐵)) |
| 11 | 3, 1, 5 | resubaddd 42375 | . . . . 5 ⊢ (𝜑 → ((𝐵 −ℝ 𝐶) = (𝐴 −ℝ 𝐵) ↔ (𝐶 + (𝐴 −ℝ 𝐵)) = 𝐵)) |
| 12 | 10, 11 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐶 + (𝐴 −ℝ 𝐵)) = 𝐵) |
| 13 | 12 | oveq1d 7405 | . . 3 ⊢ (𝜑 → ((𝐶 + (𝐴 −ℝ 𝐵)) + (𝐵 −ℝ 𝐶)) = (𝐵 + (𝐵 −ℝ 𝐶))) |
| 14 | 1 | recnd 11209 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 15 | 5 | recnd 11209 | . . . 4 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) ∈ ℂ) |
| 16 | 7 | recnd 11209 | . . . 4 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) ∈ ℂ) |
| 17 | 14, 15, 16 | addassd 11203 | . . 3 ⊢ (𝜑 → ((𝐶 + (𝐴 −ℝ 𝐵)) + (𝐵 −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)))) |
| 18 | 2, 3, 7 | resubaddd 42375 | . . . 4 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶) ↔ (𝐵 + (𝐵 −ℝ 𝐶)) = 𝐴)) |
| 19 | 9, 18 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐵 + (𝐵 −ℝ 𝐶)) = 𝐴) |
| 20 | 13, 17, 19 | 3eqtr3d 2773 | . 2 ⊢ (𝜑 → (𝐶 + ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶))) = 𝐴) |
| 21 | 1, 8, 20 | reladdrsub 42380 | 1 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℝcr 11074 + caddc 11078 −ℝ cresub 42360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-addrcl 11136 ax-addass 11140 ax-rnegex 11146 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-resub 42361 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |