Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubidaddlidlem Structured version   Visualization version   GIF version

Theorem resubidaddlidlem 42382
Description: Lemma for resubidaddlid 42383. A special case of npncan 11443. (Contributed by Steven Nguyen, 8-Jan-2023.)
Hypotheses
Ref Expression
resubidaddridlem.a (𝜑𝐴 ∈ ℝ)
resubidaddridlem.b (𝜑𝐵 ∈ ℝ)
resubidaddridlem.c (𝜑𝐶 ∈ ℝ)
resubidaddridlem.1 (𝜑 → (𝐴 𝐵) = (𝐵 𝐶))
Assertion
Ref Expression
resubidaddlidlem (𝜑 → ((𝐴 𝐵) + (𝐵 𝐶)) = (𝐴 𝐶))

Proof of Theorem resubidaddlidlem
StepHypRef Expression
1 resubidaddridlem.c . 2 (𝜑𝐶 ∈ ℝ)
2 resubidaddridlem.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 resubidaddridlem.b . . . 4 (𝜑𝐵 ∈ ℝ)
4 rersubcl 42366 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) ∈ ℝ)
52, 3, 4syl2anc 584 . . 3 (𝜑 → (𝐴 𝐵) ∈ ℝ)
6 rersubcl 42366 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 𝐶) ∈ ℝ)
73, 1, 6syl2anc 584 . . 3 (𝜑 → (𝐵 𝐶) ∈ ℝ)
85, 7readdcld 11203 . 2 (𝜑 → ((𝐴 𝐵) + (𝐵 𝐶)) ∈ ℝ)
9 resubidaddridlem.1 . . . . . 6 (𝜑 → (𝐴 𝐵) = (𝐵 𝐶))
109eqcomd 2735 . . . . 5 (𝜑 → (𝐵 𝐶) = (𝐴 𝐵))
113, 1, 5resubaddd 42368 . . . . 5 (𝜑 → ((𝐵 𝐶) = (𝐴 𝐵) ↔ (𝐶 + (𝐴 𝐵)) = 𝐵))
1210, 11mpbid 232 . . . 4 (𝜑 → (𝐶 + (𝐴 𝐵)) = 𝐵)
1312oveq1d 7402 . . 3 (𝜑 → ((𝐶 + (𝐴 𝐵)) + (𝐵 𝐶)) = (𝐵 + (𝐵 𝐶)))
141recnd 11202 . . . 4 (𝜑𝐶 ∈ ℂ)
155recnd 11202 . . . 4 (𝜑 → (𝐴 𝐵) ∈ ℂ)
167recnd 11202 . . . 4 (𝜑 → (𝐵 𝐶) ∈ ℂ)
1714, 15, 16addassd 11196 . . 3 (𝜑 → ((𝐶 + (𝐴 𝐵)) + (𝐵 𝐶)) = (𝐶 + ((𝐴 𝐵) + (𝐵 𝐶))))
182, 3, 7resubaddd 42368 . . . 4 (𝜑 → ((𝐴 𝐵) = (𝐵 𝐶) ↔ (𝐵 + (𝐵 𝐶)) = 𝐴))
199, 18mpbid 232 . . 3 (𝜑 → (𝐵 + (𝐵 𝐶)) = 𝐴)
2013, 17, 193eqtr3d 2772 . 2 (𝜑 → (𝐶 + ((𝐴 𝐵) + (𝐵 𝐶))) = 𝐴)
211, 8, 20reladdrsub 42373 1 (𝜑 → ((𝐴 𝐵) + (𝐵 𝐶)) = (𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7387  cr 11067   + caddc 11071   cresub 42353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-addrcl 11129  ax-addass 11133  ax-rnegex 11139  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-resub 42354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator