| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resubidaddlidlem | Structured version Visualization version GIF version | ||
| Description: Lemma for resubidaddlid 42405. A special case of npncan 11509. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| Ref | Expression |
|---|---|
| resubidaddridlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resubidaddridlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| resubidaddridlem.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| resubidaddridlem.1 | ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) |
| Ref | Expression |
|---|---|
| resubidaddlidlem | ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubidaddridlem.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 2 | resubidaddridlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | resubidaddridlem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | rersubcl 42388 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) ∈ ℝ) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) ∈ ℝ) |
| 6 | rersubcl 42388 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 −ℝ 𝐶) ∈ ℝ) | |
| 7 | 3, 1, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) ∈ ℝ) |
| 8 | 5, 7 | readdcld 11269 | . 2 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) ∈ ℝ) |
| 9 | resubidaddridlem.1 | . . . . . 6 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) | |
| 10 | 9 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) = (𝐴 −ℝ 𝐵)) |
| 11 | 3, 1, 5 | resubaddd 42390 | . . . . 5 ⊢ (𝜑 → ((𝐵 −ℝ 𝐶) = (𝐴 −ℝ 𝐵) ↔ (𝐶 + (𝐴 −ℝ 𝐵)) = 𝐵)) |
| 12 | 10, 11 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐶 + (𝐴 −ℝ 𝐵)) = 𝐵) |
| 13 | 12 | oveq1d 7425 | . . 3 ⊢ (𝜑 → ((𝐶 + (𝐴 −ℝ 𝐵)) + (𝐵 −ℝ 𝐶)) = (𝐵 + (𝐵 −ℝ 𝐶))) |
| 14 | 1 | recnd 11268 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 15 | 5 | recnd 11268 | . . . 4 ⊢ (𝜑 → (𝐴 −ℝ 𝐵) ∈ ℂ) |
| 16 | 7 | recnd 11268 | . . . 4 ⊢ (𝜑 → (𝐵 −ℝ 𝐶) ∈ ℂ) |
| 17 | 14, 15, 16 | addassd 11262 | . . 3 ⊢ (𝜑 → ((𝐶 + (𝐴 −ℝ 𝐵)) + (𝐵 −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)))) |
| 18 | 2, 3, 7 | resubaddd 42390 | . . . 4 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶) ↔ (𝐵 + (𝐵 −ℝ 𝐶)) = 𝐴)) |
| 19 | 9, 18 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐵 + (𝐵 −ℝ 𝐶)) = 𝐴) |
| 20 | 13, 17, 19 | 3eqtr3d 2779 | . 2 ⊢ (𝜑 → (𝐶 + ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶))) = 𝐴) |
| 21 | 1, 8, 20 | reladdrsub 42395 | 1 ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℝcr 11133 + caddc 11137 −ℝ cresub 42375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-addrcl 11195 ax-addass 11199 ax-rnegex 11205 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-resub 42376 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |