Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrnmptle Structured version   Visualization version   GIF version

Theorem infrnmptle 45583
Description: An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infrnmptle.x 𝑥𝜑
infrnmptle.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infrnmptle.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
infrnmptle.l ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
infrnmptle (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ inf(ran (𝑥𝐴𝐶), ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem infrnmptle
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑦𝜑
2 nfv 1915 . 2 𝑧𝜑
3 infrnmptle.x . . 3 𝑥𝜑
4 eqid 2733 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
5 infrnmptle.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
63, 4, 5rnmptssd 45356 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
7 eqid 2733 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
8 infrnmptle.c . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
93, 7, 8rnmptssd 45356 . 2 (𝜑 → ran (𝑥𝐴𝐶) ⊆ ℝ*)
10 vex 3441 . . . . . 6 𝑦 ∈ V
117elrnmpt 5904 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝐴𝐶) ↔ ∃𝑥𝐴 𝑦 = 𝐶))
1210, 11ax-mp 5 . . . . 5 (𝑦 ∈ ran (𝑥𝐴𝐶) ↔ ∃𝑥𝐴 𝑦 = 𝐶)
1312biimpi 216 . . . 4 (𝑦 ∈ ran (𝑥𝐴𝐶) → ∃𝑥𝐴 𝑦 = 𝐶)
1413adantl 481 . . 3 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐶)) → ∃𝑥𝐴 𝑦 = 𝐶)
15 nfmpt1 5194 . . . . . . 7 𝑥(𝑥𝐴𝐵)
1615nfrn 5898 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
17 nfv 1915 . . . . . 6 𝑥 𝑧𝑦
1816, 17nfrexw 3281 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
19 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
204elrnmpt1 5906 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2119, 5, 20syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
22213adant3 1132 . . . . . . 7 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐵 ∈ ran (𝑥𝐴𝐵))
23 infrnmptle.l . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝐶)
24233adant3 1132 . . . . . . . 8 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐵𝐶)
25 id 22 . . . . . . . . . 10 (𝑦 = 𝐶𝑦 = 𝐶)
2625eqcomd 2739 . . . . . . . . 9 (𝑦 = 𝐶𝐶 = 𝑦)
27263ad2ant3 1135 . . . . . . . 8 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐶 = 𝑦)
2824, 27breqtrd 5121 . . . . . . 7 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐵𝑦)
29 breq1 5098 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
3029rspcev 3573 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ 𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
3122, 28, 30syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴𝑦 = 𝐶) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
32313exp 1119 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)))
333, 18, 32rexlimd 3240 . . . 4 (𝜑 → (∃𝑥𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
3433adantr 480 . . 3 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐶)) → (∃𝑥𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
3514, 34mpd 15 . 2 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐶)) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
361, 2, 6, 9, 35infleinf2 45574 1 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ inf(ran (𝑥𝐴𝐶), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2113  wrex 3057  Vcvv 3437   class class class wbr 5095  cmpt 5176  ran crn 5622  infcinf 9336  *cxr 11156   < clt 11157  cle 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358
This theorem is referenced by:  limsupres  45865
  Copyright terms: Public domain W3C validator