| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infrnmptle | Structured version Visualization version GIF version | ||
| Description: An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| infrnmptle.x | ⊢ Ⅎ𝑥𝜑 |
| infrnmptle.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| infrnmptle.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
| infrnmptle.l | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| infrnmptle | ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐶), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 3 | infrnmptle.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | infrnmptle.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 6 | 3, 4, 5 | rnmptssd 45190 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ*) |
| 7 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 8 | infrnmptle.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) | |
| 9 | 3, 7, 8 | rnmptssd 45190 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ ℝ*) |
| 10 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 11 | 7 | elrnmpt 5922 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
| 13 | 12 | biimpi 216 | . . . 4 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
| 15 | nfmpt1 5206 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 16 | 15 | nfrn 5916 | . . . . . 6 ⊢ Ⅎ𝑥ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 17 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
| 18 | 16, 17 | nfrexw 3287 | . . . . 5 ⊢ Ⅎ𝑥∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 |
| 19 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 20 | 4 | elrnmpt1 5924 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 21 | 19, 5, 20 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 22 | 21 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 23 | infrnmptle.l | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
| 24 | 23 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐵 ≤ 𝐶) |
| 25 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐶 → 𝑦 = 𝐶) | |
| 26 | 25 | eqcomd 2735 | . . . . . . . . 9 ⊢ (𝑦 = 𝐶 → 𝐶 = 𝑦) |
| 27 | 26 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐶 = 𝑦) |
| 28 | 24, 27 | breqtrd 5133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐵 ≤ 𝑦) |
| 29 | breq1 5110 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) | |
| 30 | 29 | rspcev 3588 | . . . . . . 7 ⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 31 | 22, 28, 30 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 32 | 31 | 3exp 1119 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦))) |
| 33 | 3, 18, 32 | rexlimd 3244 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
| 34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) → (∃𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
| 35 | 14, 34 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 36 | 1, 2, 6, 9, 35 | infleinf2 45410 | 1 ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐶), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 infcinf 9392 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: limsupres 45703 |
| Copyright terms: Public domain | W3C validator |