Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrnmptle Structured version   Visualization version   GIF version

Theorem infrnmptle 45426
Description: An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infrnmptle.x 𝑥𝜑
infrnmptle.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infrnmptle.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
infrnmptle.l ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
infrnmptle (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ inf(ran (𝑥𝐴𝐶), ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem infrnmptle
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑦𝜑
2 nfv 1914 . 2 𝑧𝜑
3 infrnmptle.x . . 3 𝑥𝜑
4 eqid 2730 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
5 infrnmptle.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
63, 4, 5rnmptssd 45197 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
7 eqid 2730 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
8 infrnmptle.c . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
93, 7, 8rnmptssd 45197 . 2 (𝜑 → ran (𝑥𝐴𝐶) ⊆ ℝ*)
10 vex 3454 . . . . . 6 𝑦 ∈ V
117elrnmpt 5925 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝐴𝐶) ↔ ∃𝑥𝐴 𝑦 = 𝐶))
1210, 11ax-mp 5 . . . . 5 (𝑦 ∈ ran (𝑥𝐴𝐶) ↔ ∃𝑥𝐴 𝑦 = 𝐶)
1312biimpi 216 . . . 4 (𝑦 ∈ ran (𝑥𝐴𝐶) → ∃𝑥𝐴 𝑦 = 𝐶)
1413adantl 481 . . 3 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐶)) → ∃𝑥𝐴 𝑦 = 𝐶)
15 nfmpt1 5209 . . . . . . 7 𝑥(𝑥𝐴𝐵)
1615nfrn 5919 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
17 nfv 1914 . . . . . 6 𝑥 𝑧𝑦
1816, 17nfrexw 3289 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
19 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
204elrnmpt1 5927 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2119, 5, 20syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
22213adant3 1132 . . . . . . 7 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐵 ∈ ran (𝑥𝐴𝐵))
23 infrnmptle.l . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝐶)
24233adant3 1132 . . . . . . . 8 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐵𝐶)
25 id 22 . . . . . . . . . 10 (𝑦 = 𝐶𝑦 = 𝐶)
2625eqcomd 2736 . . . . . . . . 9 (𝑦 = 𝐶𝐶 = 𝑦)
27263ad2ant3 1135 . . . . . . . 8 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐶 = 𝑦)
2824, 27breqtrd 5136 . . . . . . 7 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐵𝑦)
29 breq1 5113 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
3029rspcev 3591 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ 𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
3122, 28, 30syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴𝑦 = 𝐶) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
32313exp 1119 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)))
333, 18, 32rexlimd 3245 . . . 4 (𝜑 → (∃𝑥𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
3433adantr 480 . . 3 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐶)) → (∃𝑥𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
3514, 34mpd 15 . 2 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐶)) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
361, 2, 6, 9, 35infleinf2 45417 1 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ inf(ran (𝑥𝐴𝐶), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wrex 3054  Vcvv 3450   class class class wbr 5110  cmpt 5191  ran crn 5642  infcinf 9399  *cxr 11214   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  limsupres  45710
  Copyright terms: Public domain W3C validator