Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > infrnmptle | Structured version Visualization version GIF version |
Description: An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
infrnmptle.x | ⊢ Ⅎ𝑥𝜑 |
infrnmptle.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
infrnmptle.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
infrnmptle.l | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
infrnmptle | ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐶), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1915 | . 2 ⊢ Ⅎ𝑧𝜑 | |
3 | infrnmptle.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
4 | eqid 2758 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | infrnmptle.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
6 | 3, 4, 5 | rnmptssd 42216 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ*) |
7 | eqid 2758 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
8 | infrnmptle.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) | |
9 | 3, 7, 8 | rnmptssd 42216 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ ℝ*) |
10 | vex 3413 | . . . . . 6 ⊢ 𝑦 ∈ V | |
11 | 7 | elrnmpt 5797 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
13 | 12 | biimpi 219 | . . . 4 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
14 | 13 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
15 | nfmpt1 5130 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
16 | 15 | nfrn 5793 | . . . . . 6 ⊢ Ⅎ𝑥ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
17 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
18 | 16, 17 | nfrex 3233 | . . . . 5 ⊢ Ⅎ𝑥∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 |
19 | simpr 488 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
20 | 4 | elrnmpt1 5799 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
21 | 19, 5, 20 | syl2anc 587 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
22 | 21 | 3adant3 1129 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
23 | infrnmptle.l | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
24 | 23 | 3adant3 1129 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐵 ≤ 𝐶) |
25 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐶 → 𝑦 = 𝐶) | |
26 | 25 | eqcomd 2764 | . . . . . . . . 9 ⊢ (𝑦 = 𝐶 → 𝐶 = 𝑦) |
27 | 26 | 3ad2ant3 1132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐶 = 𝑦) |
28 | 24, 27 | breqtrd 5058 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐵 ≤ 𝑦) |
29 | breq1 5035 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) | |
30 | 29 | rspcev 3541 | . . . . . . 7 ⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
31 | 22, 28, 30 | syl2anc 587 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
32 | 31 | 3exp 1116 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦))) |
33 | 3, 18, 32 | rexlimd 3241 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
34 | 33 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) → (∃𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
35 | 14, 34 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
36 | 1, 2, 6, 9, 35 | infleinf2 42439 | 1 ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐶), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 Ⅎwnf 1785 ∈ wcel 2111 ∃wrex 3071 Vcvv 3409 class class class wbr 5032 ↦ cmpt 5112 ran crn 5525 infcinf 8938 ℝ*cxr 10712 < clt 10713 ≤ cle 10714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 |
This theorem is referenced by: limsupres 42735 |
Copyright terms: Public domain | W3C validator |