![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infrnmptle | Structured version Visualization version GIF version |
Description: An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
infrnmptle.x | ⊢ Ⅎ𝑥𝜑 |
infrnmptle.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
infrnmptle.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
infrnmptle.l | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
infrnmptle | ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐶), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1909 | . 2 ⊢ Ⅎ𝑧𝜑 | |
3 | infrnmptle.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
4 | eqid 2724 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | infrnmptle.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
6 | 3, 4, 5 | rnmptssd 44380 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ*) |
7 | eqid 2724 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
8 | infrnmptle.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) | |
9 | 3, 7, 8 | rnmptssd 44380 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ ℝ*) |
10 | vex 3470 | . . . . . 6 ⊢ 𝑦 ∈ V | |
11 | 7 | elrnmpt 5945 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
13 | 12 | biimpi 215 | . . . 4 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
15 | nfmpt1 5246 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
16 | 15 | nfrn 5941 | . . . . . 6 ⊢ Ⅎ𝑥ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
17 | nfv 1909 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
18 | 16, 17 | nfrexw 3302 | . . . . 5 ⊢ Ⅎ𝑥∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 |
19 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
20 | 4 | elrnmpt1 5947 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
21 | 19, 5, 20 | syl2anc 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
22 | 21 | 3adant3 1129 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
23 | infrnmptle.l | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
24 | 23 | 3adant3 1129 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐵 ≤ 𝐶) |
25 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐶 → 𝑦 = 𝐶) | |
26 | 25 | eqcomd 2730 | . . . . . . . . 9 ⊢ (𝑦 = 𝐶 → 𝐶 = 𝑦) |
27 | 26 | 3ad2ant3 1132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐶 = 𝑦) |
28 | 24, 27 | breqtrd 5164 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐵 ≤ 𝑦) |
29 | breq1 5141 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) | |
30 | 29 | rspcev 3604 | . . . . . . 7 ⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
31 | 22, 28, 30 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
32 | 31 | 3exp 1116 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦))) |
33 | 3, 18, 32 | rexlimd 3255 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) → (∃𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
35 | 14, 34 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
36 | 1, 2, 6, 9, 35 | infleinf2 44609 | 1 ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐶), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ∃wrex 3062 Vcvv 3466 class class class wbr 5138 ↦ cmpt 5221 ran crn 5667 infcinf 9432 ℝ*cxr 11244 < clt 11245 ≤ cle 11246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 |
This theorem is referenced by: limsupres 44906 |
Copyright terms: Public domain | W3C validator |