Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrnmptle Structured version   Visualization version   GIF version

Theorem infrnmptle 42917
Description: An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infrnmptle.x 𝑥𝜑
infrnmptle.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infrnmptle.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
infrnmptle.l ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
infrnmptle (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ inf(ran (𝑥𝐴𝐶), ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem infrnmptle
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1920 . 2 𝑦𝜑
2 nfv 1920 . 2 𝑧𝜑
3 infrnmptle.x . . 3 𝑥𝜑
4 eqid 2739 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
5 infrnmptle.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
63, 4, 5rnmptssd 42688 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
7 eqid 2739 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
8 infrnmptle.c . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
93, 7, 8rnmptssd 42688 . 2 (𝜑 → ran (𝑥𝐴𝐶) ⊆ ℝ*)
10 vex 3434 . . . . . 6 𝑦 ∈ V
117elrnmpt 5862 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝐴𝐶) ↔ ∃𝑥𝐴 𝑦 = 𝐶))
1210, 11ax-mp 5 . . . . 5 (𝑦 ∈ ran (𝑥𝐴𝐶) ↔ ∃𝑥𝐴 𝑦 = 𝐶)
1312biimpi 215 . . . 4 (𝑦 ∈ ran (𝑥𝐴𝐶) → ∃𝑥𝐴 𝑦 = 𝐶)
1413adantl 481 . . 3 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐶)) → ∃𝑥𝐴 𝑦 = 𝐶)
15 nfmpt1 5186 . . . . . . 7 𝑥(𝑥𝐴𝐵)
1615nfrn 5858 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
17 nfv 1920 . . . . . 6 𝑥 𝑧𝑦
1816, 17nfrex 3239 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
19 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
204elrnmpt1 5864 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2119, 5, 20syl2anc 583 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
22213adant3 1130 . . . . . . 7 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐵 ∈ ran (𝑥𝐴𝐵))
23 infrnmptle.l . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝐶)
24233adant3 1130 . . . . . . . 8 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐵𝐶)
25 id 22 . . . . . . . . . 10 (𝑦 = 𝐶𝑦 = 𝐶)
2625eqcomd 2745 . . . . . . . . 9 (𝑦 = 𝐶𝐶 = 𝑦)
27263ad2ant3 1133 . . . . . . . 8 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐶 = 𝑦)
2824, 27breqtrd 5104 . . . . . . 7 ((𝜑𝑥𝐴𝑦 = 𝐶) → 𝐵𝑦)
29 breq1 5081 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
3029rspcev 3560 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ 𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
3122, 28, 30syl2anc 583 . . . . . 6 ((𝜑𝑥𝐴𝑦 = 𝐶) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
32313exp 1117 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)))
333, 18, 32rexlimd 3247 . . . 4 (𝜑 → (∃𝑥𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
3433adantr 480 . . 3 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐶)) → (∃𝑥𝐴 𝑦 = 𝐶 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
3514, 34mpd 15 . 2 ((𝜑𝑦 ∈ ran (𝑥𝐴𝐶)) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
361, 2, 6, 9, 35infleinf2 42908 1 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ inf(ran (𝑥𝐴𝐶), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wnf 1789  wcel 2109  wrex 3066  Vcvv 3430   class class class wbr 5078  cmpt 5161  ran crn 5589  infcinf 9161  *cxr 10992   < clt 10993  cle 10994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191
This theorem is referenced by:  limsupres  43200
  Copyright terms: Public domain W3C validator