| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpcnne0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.) |
| Ref | Expression |
|---|---|
| rpcnne0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn 12962 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
| 2 | rpne0 12968 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ℂcc 11066 0cc0 11068 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-rp 12952 |
| This theorem is referenced by: rpcndif0 12972 mod0 13838 modlt 13842 modcyc 13868 modmuladdnn0 13880 moddi 13904 modirr 13907 icchmeo 24838 aaliou3lem3 26252 aaliou3lem8 26253 reeff1o 26357 reeflog 26489 relogeftb 26493 rpcxpcl 26585 relogbcxp 26695 rlimcnp 26875 rlimcnp2 26876 divsqrtsumlem 26890 harmonicbnd4 26921 logfacrlim 27135 logexprlim 27136 vmadivsum 27393 dchrmusum2 27405 dchrvmasumlem2 27409 dchrvmasumiflem1 27412 dchrisum0lem2a 27428 mudivsum 27441 mulogsumlem 27442 mulog2sumlem2 27446 selberglem2 27457 selberg2lem 27461 selberg2 27462 pntrsumo1 27476 selbergr 27479 pntibndlem2 27502 pntibndlem3 27503 pntlemb 27508 pntlemr 27513 pntlemf 27516 blocnilem 30733 minvecolem3 30805 itg2addnclem2 37666 fllogbd 48549 |
| Copyright terms: Public domain | W3C validator |