Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpcnne0 | Structured version Visualization version GIF version |
Description: A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.) |
Ref | Expression |
---|---|
rpcnne0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12596 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | rpne0 12602 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
3 | 1, 2 | jca 515 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 ≠ wne 2940 ℂcc 10727 0cc0 10729 ℝ+crp 12586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-addrcl 10790 ax-rnegex 10800 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-rp 12587 |
This theorem is referenced by: rpcndif0 12605 mod0 13449 modlt 13453 modcyc 13479 modmuladdnn0 13488 moddi 13512 modirr 13515 aaliou3lem3 25237 aaliou3lem8 25238 reeff1o 25339 reeflog 25469 relogeftb 25473 rpcxpcl 25564 relogbcxp 25668 rlimcnp 25848 rlimcnp2 25849 divsqrtsumlem 25862 harmonicbnd4 25893 logfacrlim 26105 logexprlim 26106 vmadivsum 26363 dchrmusum2 26375 dchrvmasumlem2 26379 dchrvmasumiflem1 26382 dchrisum0lem2a 26398 mudivsum 26411 mulogsumlem 26412 mulog2sumlem2 26416 selberglem2 26427 selberg2lem 26431 selberg2 26432 pntrsumo1 26446 selbergr 26449 pntibndlem2 26472 pntibndlem3 26473 pntlemb 26478 pntlemr 26483 pntlemf 26486 blocnilem 28885 minvecolem3 28957 itg2addnclem2 35566 fllogbd 45579 |
Copyright terms: Public domain | W3C validator |