Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpcnne0 | Structured version Visualization version GIF version |
Description: A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.) |
Ref | Expression |
---|---|
rpcnne0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12669 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | rpne0 12675 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
3 | 1, 2 | jca 511 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ℂcc 10800 0cc0 10802 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-rp 12660 |
This theorem is referenced by: rpcndif0 12678 mod0 13524 modlt 13528 modcyc 13554 modmuladdnn0 13563 moddi 13587 modirr 13590 aaliou3lem3 25409 aaliou3lem8 25410 reeff1o 25511 reeflog 25641 relogeftb 25645 rpcxpcl 25736 relogbcxp 25840 rlimcnp 26020 rlimcnp2 26021 divsqrtsumlem 26034 harmonicbnd4 26065 logfacrlim 26277 logexprlim 26278 vmadivsum 26535 dchrmusum2 26547 dchrvmasumlem2 26551 dchrvmasumiflem1 26554 dchrisum0lem2a 26570 mudivsum 26583 mulogsumlem 26584 mulog2sumlem2 26588 selberglem2 26599 selberg2lem 26603 selberg2 26604 pntrsumo1 26618 selbergr 26621 pntibndlem2 26644 pntibndlem3 26645 pntlemb 26650 pntlemr 26655 pntlemf 26658 blocnilem 29067 minvecolem3 29139 itg2addnclem2 35756 fllogbd 45794 |
Copyright terms: Public domain | W3C validator |