![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpcnne0 | Structured version Visualization version GIF version |
Description: A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.) |
Ref | Expression |
---|---|
rpcnne0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 13043 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | rpne0 13049 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
3 | 1, 2 | jca 511 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ℂcc 11151 0cc0 11153 ℝ+crp 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-rp 13033 |
This theorem is referenced by: rpcndif0 13052 mod0 13913 modlt 13917 modcyc 13943 modmuladdnn0 13953 moddi 13977 modirr 13980 icchmeo 24985 aaliou3lem3 26401 aaliou3lem8 26402 reeff1o 26506 reeflog 26637 relogeftb 26641 rpcxpcl 26733 relogbcxp 26843 rlimcnp 27023 rlimcnp2 27024 divsqrtsumlem 27038 harmonicbnd4 27069 logfacrlim 27283 logexprlim 27284 vmadivsum 27541 dchrmusum2 27553 dchrvmasumlem2 27557 dchrvmasumiflem1 27560 dchrisum0lem2a 27576 mudivsum 27589 mulogsumlem 27590 mulog2sumlem2 27594 selberglem2 27605 selberg2lem 27609 selberg2 27610 pntrsumo1 27624 selbergr 27627 pntibndlem2 27650 pntibndlem3 27651 pntlemb 27656 pntlemr 27661 pntlemf 27664 blocnilem 30833 minvecolem3 30905 itg2addnclem2 37659 fllogbd 48410 |
Copyright terms: Public domain | W3C validator |