Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpcnne0 | Structured version Visualization version GIF version |
Description: A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.) |
Ref | Expression |
---|---|
rpcnne0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12749 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | rpne0 12755 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
3 | 1, 2 | jca 512 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2107 ≠ wne 2944 ℂcc 10878 0cc0 10880 ℝ+crp 12739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-addrcl 10941 ax-rnegex 10951 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 df-rp 12740 |
This theorem is referenced by: rpcndif0 12758 mod0 13605 modlt 13609 modcyc 13635 modmuladdnn0 13644 moddi 13668 modirr 13671 aaliou3lem3 25513 aaliou3lem8 25514 reeff1o 25615 reeflog 25745 relogeftb 25749 rpcxpcl 25840 relogbcxp 25944 rlimcnp 26124 rlimcnp2 26125 divsqrtsumlem 26138 harmonicbnd4 26169 logfacrlim 26381 logexprlim 26382 vmadivsum 26639 dchrmusum2 26651 dchrvmasumlem2 26655 dchrvmasumiflem1 26658 dchrisum0lem2a 26674 mudivsum 26687 mulogsumlem 26688 mulog2sumlem2 26692 selberglem2 26703 selberg2lem 26707 selberg2 26708 pntrsumo1 26722 selbergr 26725 pntibndlem2 26748 pntibndlem3 26749 pntlemb 26754 pntlemr 26759 pntlemf 26762 blocnilem 29175 minvecolem3 29247 itg2addnclem2 35838 fllogbd 45917 |
Copyright terms: Public domain | W3C validator |