| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpcnne0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.) |
| Ref | Expression |
|---|---|
| rpcnne0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn 12969 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
| 2 | rpne0 12975 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ℂcc 11073 0cc0 11075 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-rp 12959 |
| This theorem is referenced by: rpcndif0 12979 mod0 13845 modlt 13849 modcyc 13875 modmuladdnn0 13887 moddi 13911 modirr 13914 icchmeo 24845 aaliou3lem3 26259 aaliou3lem8 26260 reeff1o 26364 reeflog 26496 relogeftb 26500 rpcxpcl 26592 relogbcxp 26702 rlimcnp 26882 rlimcnp2 26883 divsqrtsumlem 26897 harmonicbnd4 26928 logfacrlim 27142 logexprlim 27143 vmadivsum 27400 dchrmusum2 27412 dchrvmasumlem2 27416 dchrvmasumiflem1 27419 dchrisum0lem2a 27435 mudivsum 27448 mulogsumlem 27449 mulog2sumlem2 27453 selberglem2 27464 selberg2lem 27468 selberg2 27469 pntrsumo1 27483 selbergr 27486 pntibndlem2 27509 pntibndlem3 27510 pntlemb 27515 pntlemr 27520 pntlemf 27523 blocnilem 30740 minvecolem3 30812 itg2addnclem2 37673 fllogbd 48553 |
| Copyright terms: Public domain | W3C validator |