![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inawinalem | Structured version Visualization version GIF version |
Description: Lemma for inawina 10681. (Contributed by Mario Carneiro, 8-Jun-2014.) |
Ref | Expression |
---|---|
inawinalem | ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8972 | . . . . 5 ⊢ (𝒫 𝑥 ≺ 𝐴 → 𝒫 𝑥 ≼ 𝐴) | |
2 | ondomen 10028 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴) → 𝒫 𝑥 ∈ dom card) | |
3 | isnum2 9936 | . . . . . 6 ⊢ (𝒫 𝑥 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) |
5 | 1, 4 | sylan2 592 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) |
6 | ensdomtr 9109 | . . . . . . . . 9 ⊢ ((𝑦 ≈ 𝒫 𝑥 ∧ 𝒫 𝑥 ≺ 𝐴) → 𝑦 ≺ 𝐴) | |
7 | 6 | ad2ant2l 743 | . . . . . . . 8 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑦 ≺ 𝐴) |
8 | sdomel 9120 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴)) | |
9 | 8 | ad2ant2r 744 | . . . . . . . 8 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → (𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴)) |
10 | 7, 9 | mpd 15 | . . . . . . 7 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑦 ∈ 𝐴) |
11 | vex 3470 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
12 | 11 | canth2 9126 | . . . . . . . . 9 ⊢ 𝑥 ≺ 𝒫 𝑥 |
13 | ensym 8995 | . . . . . . . . 9 ⊢ (𝑦 ≈ 𝒫 𝑥 → 𝒫 𝑥 ≈ 𝑦) | |
14 | sdomentr 9107 | . . . . . . . . 9 ⊢ ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥 ≈ 𝑦) → 𝑥 ≺ 𝑦) | |
15 | 12, 13, 14 | sylancr 586 | . . . . . . . 8 ⊢ (𝑦 ≈ 𝒫 𝑥 → 𝑥 ≺ 𝑦) |
16 | 15 | ad2antlr 724 | . . . . . . 7 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑥 ≺ 𝑦) |
17 | 10, 16 | jca 511 | . . . . . 6 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → (𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦)) |
18 | 17 | expcom 413 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) → (𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦))) |
19 | 18 | reximdv2 3156 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → (∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
20 | 5, 19 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) |
21 | 20 | ex 412 | . 2 ⊢ (𝐴 ∈ On → (𝒫 𝑥 ≺ 𝐴 → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
22 | 21 | ralimdv 3161 | 1 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 𝒫 cpw 4594 class class class wbr 5138 dom cdm 5666 Oncon0 6354 ≈ cen 8932 ≼ cdom 8933 ≺ csdm 8934 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-card 9930 |
This theorem is referenced by: inawina 10681 tskcard 10772 gruina 10809 |
Copyright terms: Public domain | W3C validator |