MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inawinalem Structured version   Visualization version   GIF version

Theorem inawinalem 10429
Description: Lemma for inawina 10430. (Contributed by Mario Carneiro, 8-Jun-2014.)
Assertion
Ref Expression
inawinalem (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem inawinalem
StepHypRef Expression
1 sdomdom 8739 . . . . 5 (𝒫 𝑥𝐴 → 𝒫 𝑥𝐴)
2 ondomen 9777 . . . . . 6 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → 𝒫 𝑥 ∈ dom card)
3 isnum2 9687 . . . . . 6 (𝒫 𝑥 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
42, 3sylib 217 . . . . 5 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
51, 4sylan2 592 . . . 4 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
6 ensdomtr 8865 . . . . . . . . 9 ((𝑦 ≈ 𝒫 𝑥 ∧ 𝒫 𝑥𝐴) → 𝑦𝐴)
76ad2ant2l 742 . . . . . . . 8 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑦𝐴)
8 sdomel 8876 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦𝐴𝑦𝐴))
98ad2ant2r 743 . . . . . . . 8 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → (𝑦𝐴𝑦𝐴))
107, 9mpd 15 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑦𝐴)
11 vex 3434 . . . . . . . . . 10 𝑥 ∈ V
1211canth2 8882 . . . . . . . . 9 𝑥 ≺ 𝒫 𝑥
13 ensym 8760 . . . . . . . . 9 (𝑦 ≈ 𝒫 𝑥 → 𝒫 𝑥𝑦)
14 sdomentr 8863 . . . . . . . . 9 ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥𝑦) → 𝑥𝑦)
1512, 13, 14sylancr 586 . . . . . . . 8 (𝑦 ≈ 𝒫 𝑥𝑥𝑦)
1615ad2antlr 723 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑥𝑦)
1710, 16jca 511 . . . . . 6 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → (𝑦𝐴𝑥𝑦))
1817expcom 413 . . . . 5 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) → (𝑦𝐴𝑥𝑦)))
1918reximdv2 3200 . . . 4 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → (∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 → ∃𝑦𝐴 𝑥𝑦))
205, 19mpd 15 . . 3 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦𝐴 𝑥𝑦)
2120ex 412 . 2 (𝐴 ∈ On → (𝒫 𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦))
2221ralimdv 3105 1 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3065  wrex 3066  𝒫 cpw 4538   class class class wbr 5078  dom cdm 5588  Oncon0 6263  cen 8704  cdom 8705  csdm 8706  cardccrd 9677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-card 9681
This theorem is referenced by:  inawina  10430  tskcard  10521  gruina  10558
  Copyright terms: Public domain W3C validator