Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inawinalem | Structured version Visualization version GIF version |
Description: Lemma for inawina 10492. (Contributed by Mario Carneiro, 8-Jun-2014.) |
Ref | Expression |
---|---|
inawinalem | ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8801 | . . . . 5 ⊢ (𝒫 𝑥 ≺ 𝐴 → 𝒫 𝑥 ≼ 𝐴) | |
2 | ondomen 9839 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴) → 𝒫 𝑥 ∈ dom card) | |
3 | isnum2 9747 | . . . . . 6 ⊢ (𝒫 𝑥 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) |
5 | 1, 4 | sylan2 594 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) |
6 | ensdomtr 8938 | . . . . . . . . 9 ⊢ ((𝑦 ≈ 𝒫 𝑥 ∧ 𝒫 𝑥 ≺ 𝐴) → 𝑦 ≺ 𝐴) | |
7 | 6 | ad2ant2l 744 | . . . . . . . 8 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑦 ≺ 𝐴) |
8 | sdomel 8949 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴)) | |
9 | 8 | ad2ant2r 745 | . . . . . . . 8 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → (𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴)) |
10 | 7, 9 | mpd 15 | . . . . . . 7 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑦 ∈ 𝐴) |
11 | vex 3441 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
12 | 11 | canth2 8955 | . . . . . . . . 9 ⊢ 𝑥 ≺ 𝒫 𝑥 |
13 | ensym 8824 | . . . . . . . . 9 ⊢ (𝑦 ≈ 𝒫 𝑥 → 𝒫 𝑥 ≈ 𝑦) | |
14 | sdomentr 8936 | . . . . . . . . 9 ⊢ ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥 ≈ 𝑦) → 𝑥 ≺ 𝑦) | |
15 | 12, 13, 14 | sylancr 588 | . . . . . . . 8 ⊢ (𝑦 ≈ 𝒫 𝑥 → 𝑥 ≺ 𝑦) |
16 | 15 | ad2antlr 725 | . . . . . . 7 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑥 ≺ 𝑦) |
17 | 10, 16 | jca 513 | . . . . . 6 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → (𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦)) |
18 | 17 | expcom 415 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) → (𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦))) |
19 | 18 | reximdv2 3158 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → (∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
20 | 5, 19 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) |
21 | 20 | ex 414 | . 2 ⊢ (𝐴 ∈ On → (𝒫 𝑥 ≺ 𝐴 → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
22 | 21 | ralimdv 3163 | 1 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 𝒫 cpw 4539 class class class wbr 5081 dom cdm 5600 Oncon0 6281 ≈ cen 8761 ≼ cdom 8762 ≺ csdm 8763 cardccrd 9737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-card 9741 |
This theorem is referenced by: inawina 10492 tskcard 10583 gruina 10620 |
Copyright terms: Public domain | W3C validator |