MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inawinalem Structured version   Visualization version   GIF version

Theorem inawinalem 10110
Description: Lemma for inawina 10111. (Contributed by Mario Carneiro, 8-Jun-2014.)
Assertion
Ref Expression
inawinalem (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem inawinalem
StepHypRef Expression
1 sdomdom 8536 . . . . 5 (𝒫 𝑥𝐴 → 𝒫 𝑥𝐴)
2 ondomen 9462 . . . . . 6 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → 𝒫 𝑥 ∈ dom card)
3 isnum2 9373 . . . . . 6 (𝒫 𝑥 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
42, 3sylib 220 . . . . 5 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
51, 4sylan2 594 . . . 4 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
6 ensdomtr 8652 . . . . . . . . 9 ((𝑦 ≈ 𝒫 𝑥 ∧ 𝒫 𝑥𝐴) → 𝑦𝐴)
76ad2ant2l 744 . . . . . . . 8 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑦𝐴)
8 sdomel 8663 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦𝐴𝑦𝐴))
98ad2ant2r 745 . . . . . . . 8 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → (𝑦𝐴𝑦𝐴))
107, 9mpd 15 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑦𝐴)
11 vex 3497 . . . . . . . . . 10 𝑥 ∈ V
1211canth2 8669 . . . . . . . . 9 𝑥 ≺ 𝒫 𝑥
13 ensym 8557 . . . . . . . . 9 (𝑦 ≈ 𝒫 𝑥 → 𝒫 𝑥𝑦)
14 sdomentr 8650 . . . . . . . . 9 ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥𝑦) → 𝑥𝑦)
1512, 13, 14sylancr 589 . . . . . . . 8 (𝑦 ≈ 𝒫 𝑥𝑥𝑦)
1615ad2antlr 725 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑥𝑦)
1710, 16jca 514 . . . . . 6 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → (𝑦𝐴𝑥𝑦))
1817expcom 416 . . . . 5 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) → (𝑦𝐴𝑥𝑦)))
1918reximdv2 3271 . . . 4 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → (∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 → ∃𝑦𝐴 𝑥𝑦))
205, 19mpd 15 . . 3 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦𝐴 𝑥𝑦)
2120ex 415 . 2 (𝐴 ∈ On → (𝒫 𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦))
2221ralimdv 3178 1 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110  wral 3138  wrex 3139  𝒫 cpw 4538   class class class wbr 5065  dom cdm 5554  Oncon0 6190  cen 8505  cdom 8506  csdm 8507  cardccrd 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-wrecs 7946  df-recs 8007  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-card 9367
This theorem is referenced by:  inawina  10111  tskcard  10202  gruina  10239
  Copyright terms: Public domain W3C validator