MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inawinalem Structured version   Visualization version   GIF version

Theorem inawinalem 10649
Description: Lemma for inawina 10650. (Contributed by Mario Carneiro, 8-Jun-2014.)
Assertion
Ref Expression
inawinalem (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem inawinalem
StepHypRef Expression
1 sdomdom 8954 . . . . 5 (𝒫 𝑥𝐴 → 𝒫 𝑥𝐴)
2 ondomen 9997 . . . . . 6 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → 𝒫 𝑥 ∈ dom card)
3 isnum2 9905 . . . . . 6 (𝒫 𝑥 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
42, 3sylib 218 . . . . 5 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
51, 4sylan2 593 . . . 4 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
6 ensdomtr 9083 . . . . . . . . 9 ((𝑦 ≈ 𝒫 𝑥 ∧ 𝒫 𝑥𝐴) → 𝑦𝐴)
76ad2ant2l 746 . . . . . . . 8 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑦𝐴)
8 sdomel 9094 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦𝐴𝑦𝐴))
98ad2ant2r 747 . . . . . . . 8 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → (𝑦𝐴𝑦𝐴))
107, 9mpd 15 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑦𝐴)
11 vex 3454 . . . . . . . . . 10 𝑥 ∈ V
1211canth2 9100 . . . . . . . . 9 𝑥 ≺ 𝒫 𝑥
13 ensym 8977 . . . . . . . . 9 (𝑦 ≈ 𝒫 𝑥 → 𝒫 𝑥𝑦)
14 sdomentr 9081 . . . . . . . . 9 ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥𝑦) → 𝑥𝑦)
1512, 13, 14sylancr 587 . . . . . . . 8 (𝑦 ≈ 𝒫 𝑥𝑥𝑦)
1615ad2antlr 727 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑥𝑦)
1710, 16jca 511 . . . . . 6 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → (𝑦𝐴𝑥𝑦))
1817expcom 413 . . . . 5 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) → (𝑦𝐴𝑥𝑦)))
1918reximdv2 3144 . . . 4 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → (∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 → ∃𝑦𝐴 𝑥𝑦))
205, 19mpd 15 . . 3 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦𝐴 𝑥𝑦)
2120ex 412 . 2 (𝐴 ∈ On → (𝒫 𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦))
2221ralimdv 3148 1 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  wrex 3054  𝒫 cpw 4566   class class class wbr 5110  dom cdm 5641  Oncon0 6335  cen 8918  cdom 8919  csdm 8920  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-card 9899
This theorem is referenced by:  inawina  10650  tskcard  10741  gruina  10778
  Copyright terms: Public domain W3C validator