MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inawinalem Structured version   Visualization version   GIF version

Theorem inawinalem 9768
Description: Lemma for inawina 9769. (Contributed by Mario Carneiro, 8-Jun-2014.)
Assertion
Ref Expression
inawinalem (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem inawinalem
StepHypRef Expression
1 sdomdom 8192 . . . . 5 (𝒫 𝑥𝐴 → 𝒫 𝑥𝐴)
2 ondomen 9115 . . . . . 6 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → 𝒫 𝑥 ∈ dom card)
3 isnum2 9026 . . . . . 6 (𝒫 𝑥 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
42, 3sylib 209 . . . . 5 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
51, 4sylan2 586 . . . 4 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥)
6 ensdomtr 8307 . . . . . . . . 9 ((𝑦 ≈ 𝒫 𝑥 ∧ 𝒫 𝑥𝐴) → 𝑦𝐴)
76ad2ant2l 752 . . . . . . . 8 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑦𝐴)
8 sdomel 8318 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦𝐴𝑦𝐴))
98ad2ant2r 753 . . . . . . . 8 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → (𝑦𝐴𝑦𝐴))
107, 9mpd 15 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑦𝐴)
11 vex 3353 . . . . . . . . . 10 𝑥 ∈ V
1211canth2 8324 . . . . . . . . 9 𝑥 ≺ 𝒫 𝑥
13 ensym 8213 . . . . . . . . 9 (𝑦 ≈ 𝒫 𝑥 → 𝒫 𝑥𝑦)
14 sdomentr 8305 . . . . . . . . 9 ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥𝑦) → 𝑥𝑦)
1512, 13, 14sylancr 581 . . . . . . . 8 (𝑦 ≈ 𝒫 𝑥𝑥𝑦)
1615ad2antlr 718 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → 𝑥𝑦)
1710, 16jca 507 . . . . . 6 (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥𝐴)) → (𝑦𝐴𝑥𝑦))
1817expcom 402 . . . . 5 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) → (𝑦𝐴𝑥𝑦)))
1918reximdv2 3160 . . . 4 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → (∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 → ∃𝑦𝐴 𝑥𝑦))
205, 19mpd 15 . . 3 ((𝐴 ∈ On ∧ 𝒫 𝑥𝐴) → ∃𝑦𝐴 𝑥𝑦)
2120ex 401 . 2 (𝐴 ∈ On → (𝒫 𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦))
2221ralimdv 3110 1 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 2155  wral 3055  wrex 3056  𝒫 cpw 4317   class class class wbr 4811  dom cdm 5279  Oncon0 5910  cen 8161  cdom 8162  csdm 8163  cardccrd 9016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-wrecs 7614  df-recs 7676  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-card 9020
This theorem is referenced by:  inawina  9769  tskcard  9860  gruina  9897
  Copyright terms: Public domain W3C validator