| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inawinalem | Structured version Visualization version GIF version | ||
| Description: Lemma for inawina 10603. (Contributed by Mario Carneiro, 8-Jun-2014.) |
| Ref | Expression |
|---|---|
| inawinalem | ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom 8912 | . . . . 5 ⊢ (𝒫 𝑥 ≺ 𝐴 → 𝒫 𝑥 ≼ 𝐴) | |
| 2 | ondomen 9950 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴) → 𝒫 𝑥 ∈ dom card) | |
| 3 | isnum2 9860 | . . . . . 6 ⊢ (𝒫 𝑥 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) |
| 5 | 1, 4 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) |
| 6 | ensdomtr 9037 | . . . . . . . . 9 ⊢ ((𝑦 ≈ 𝒫 𝑥 ∧ 𝒫 𝑥 ≺ 𝐴) → 𝑦 ≺ 𝐴) | |
| 7 | 6 | ad2ant2l 746 | . . . . . . . 8 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑦 ≺ 𝐴) |
| 8 | sdomel 9048 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴)) | |
| 9 | 8 | ad2ant2r 747 | . . . . . . . 8 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → (𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴)) |
| 10 | 7, 9 | mpd 15 | . . . . . . 7 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑦 ∈ 𝐴) |
| 11 | vex 3442 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 12 | 11 | canth2 9054 | . . . . . . . . 9 ⊢ 𝑥 ≺ 𝒫 𝑥 |
| 13 | ensym 8935 | . . . . . . . . 9 ⊢ (𝑦 ≈ 𝒫 𝑥 → 𝒫 𝑥 ≈ 𝑦) | |
| 14 | sdomentr 9035 | . . . . . . . . 9 ⊢ ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥 ≈ 𝑦) → 𝑥 ≺ 𝑦) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . . . . . 8 ⊢ (𝑦 ≈ 𝒫 𝑥 → 𝑥 ≺ 𝑦) |
| 16 | 15 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑥 ≺ 𝑦) |
| 17 | 10, 16 | jca 511 | . . . . . 6 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → (𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦)) |
| 18 | 17 | expcom 413 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) → (𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦))) |
| 19 | 18 | reximdv2 3139 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → (∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| 20 | 5, 19 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) |
| 21 | 20 | ex 412 | . 2 ⊢ (𝐴 ∈ On → (𝒫 𝑥 ≺ 𝐴 → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| 22 | 21 | ralimdv 3143 | 1 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 𝒫 cpw 4553 class class class wbr 5095 dom cdm 5623 Oncon0 6311 ≈ cen 8876 ≼ cdom 8877 ≺ csdm 8878 cardccrd 9850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-card 9854 |
| This theorem is referenced by: inawina 10603 tskcard 10694 gruina 10731 |
| Copyright terms: Public domain | W3C validator |