| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inawinalem | Structured version Visualization version GIF version | ||
| Description: Lemma for inawina 10730. (Contributed by Mario Carneiro, 8-Jun-2014.) |
| Ref | Expression |
|---|---|
| inawinalem | ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom 9020 | . . . . 5 ⊢ (𝒫 𝑥 ≺ 𝐴 → 𝒫 𝑥 ≼ 𝐴) | |
| 2 | ondomen 10077 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴) → 𝒫 𝑥 ∈ dom card) | |
| 3 | isnum2 9985 | . . . . . 6 ⊢ (𝒫 𝑥 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) |
| 5 | 1, 4 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) |
| 6 | ensdomtr 9153 | . . . . . . . . 9 ⊢ ((𝑦 ≈ 𝒫 𝑥 ∧ 𝒫 𝑥 ≺ 𝐴) → 𝑦 ≺ 𝐴) | |
| 7 | 6 | ad2ant2l 746 | . . . . . . . 8 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑦 ≺ 𝐴) |
| 8 | sdomel 9164 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴)) | |
| 9 | 8 | ad2ant2r 747 | . . . . . . . 8 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → (𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴)) |
| 10 | 7, 9 | mpd 15 | . . . . . . 7 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑦 ∈ 𝐴) |
| 11 | vex 3484 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 12 | 11 | canth2 9170 | . . . . . . . . 9 ⊢ 𝑥 ≺ 𝒫 𝑥 |
| 13 | ensym 9043 | . . . . . . . . 9 ⊢ (𝑦 ≈ 𝒫 𝑥 → 𝒫 𝑥 ≈ 𝑦) | |
| 14 | sdomentr 9151 | . . . . . . . . 9 ⊢ ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥 ≈ 𝑦) → 𝑥 ≺ 𝑦) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . . . . . 8 ⊢ (𝑦 ≈ 𝒫 𝑥 → 𝑥 ≺ 𝑦) |
| 16 | 15 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑥 ≺ 𝑦) |
| 17 | 10, 16 | jca 511 | . . . . . 6 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → (𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦)) |
| 18 | 17 | expcom 413 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) → (𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦))) |
| 19 | 18 | reximdv2 3164 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → (∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| 20 | 5, 19 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) |
| 21 | 20 | ex 412 | . 2 ⊢ (𝐴 ∈ On → (𝒫 𝑥 ≺ 𝐴 → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| 22 | 21 | ralimdv 3169 | 1 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 𝒫 cpw 4600 class class class wbr 5143 dom cdm 5685 Oncon0 6384 ≈ cen 8982 ≼ cdom 8983 ≺ csdm 8984 cardccrd 9975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-card 9979 |
| This theorem is referenced by: inawina 10730 tskcard 10821 gruina 10858 |
| Copyright terms: Public domain | W3C validator |