Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inawinalem | Structured version Visualization version GIF version |
Description: Lemma for inawina 10430. (Contributed by Mario Carneiro, 8-Jun-2014.) |
Ref | Expression |
---|---|
inawinalem | ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8739 | . . . . 5 ⊢ (𝒫 𝑥 ≺ 𝐴 → 𝒫 𝑥 ≼ 𝐴) | |
2 | ondomen 9777 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴) → 𝒫 𝑥 ∈ dom card) | |
3 | isnum2 9687 | . . . . . 6 ⊢ (𝒫 𝑥 ∈ dom card ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) |
5 | 1, 4 | sylan2 592 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥) |
6 | ensdomtr 8865 | . . . . . . . . 9 ⊢ ((𝑦 ≈ 𝒫 𝑥 ∧ 𝒫 𝑥 ≺ 𝐴) → 𝑦 ≺ 𝐴) | |
7 | 6 | ad2ant2l 742 | . . . . . . . 8 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑦 ≺ 𝐴) |
8 | sdomel 8876 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴)) | |
9 | 8 | ad2ant2r 743 | . . . . . . . 8 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → (𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴)) |
10 | 7, 9 | mpd 15 | . . . . . . 7 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑦 ∈ 𝐴) |
11 | vex 3434 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
12 | 11 | canth2 8882 | . . . . . . . . 9 ⊢ 𝑥 ≺ 𝒫 𝑥 |
13 | ensym 8760 | . . . . . . . . 9 ⊢ (𝑦 ≈ 𝒫 𝑥 → 𝒫 𝑥 ≈ 𝑦) | |
14 | sdomentr 8863 | . . . . . . . . 9 ⊢ ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥 ≈ 𝑦) → 𝑥 ≺ 𝑦) | |
15 | 12, 13, 14 | sylancr 586 | . . . . . . . 8 ⊢ (𝑦 ≈ 𝒫 𝑥 → 𝑥 ≺ 𝑦) |
16 | 15 | ad2antlr 723 | . . . . . . 7 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → 𝑥 ≺ 𝑦) |
17 | 10, 16 | jca 511 | . . . . . 6 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) ∧ (𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴)) → (𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦)) |
18 | 17 | expcom 413 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ((𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥) → (𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦))) |
19 | 18 | reximdv2 3200 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → (∃𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
20 | 5, 19 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) |
21 | 20 | ex 412 | . 2 ⊢ (𝐴 ∈ On → (𝒫 𝑥 ≺ 𝐴 → ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
22 | 21 | ralimdv 3105 | 1 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 𝒫 cpw 4538 class class class wbr 5078 dom cdm 5588 Oncon0 6263 ≈ cen 8704 ≼ cdom 8705 ≺ csdm 8706 cardccrd 9677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-card 9681 |
This theorem is referenced by: inawina 10430 tskcard 10521 gruina 10558 |
Copyright terms: Public domain | W3C validator |