MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppciso Structured version   Visualization version   GIF version

Theorem oppciso 17826
Description: An isomorphism in the opposite category. See also remark 3.9 in [Adamek] p. 28. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
oppcsect.b 𝐵 = (Base‘𝐶)
oppcsect.o 𝑂 = (oppCat‘𝐶)
oppcsect.c (𝜑𝐶 ∈ Cat)
oppcsect.x (𝜑𝑋𝐵)
oppcsect.y (𝜑𝑌𝐵)
oppciso.s 𝐼 = (Iso‘𝐶)
oppciso.t 𝐽 = (Iso‘𝑂)
Assertion
Ref Expression
oppciso (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋))

Proof of Theorem oppciso
StepHypRef Expression
1 oppcsect.b . . . 4 𝐵 = (Base‘𝐶)
2 oppcsect.o . . . 4 𝑂 = (oppCat‘𝐶)
3 oppcsect.c . . . 4 (𝜑𝐶 ∈ Cat)
4 oppcsect.x . . . 4 (𝜑𝑋𝐵)
5 oppcsect.y . . . 4 (𝜑𝑌𝐵)
6 eqid 2736 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
7 eqid 2736 . . . 4 (Inv‘𝑂) = (Inv‘𝑂)
81, 2, 3, 4, 5, 6, 7oppcinv 17825 . . 3 (𝜑 → (𝑋(Inv‘𝑂)𝑌) = (𝑌(Inv‘𝐶)𝑋))
98dmeqd 5915 . 2 (𝜑 → dom (𝑋(Inv‘𝑂)𝑌) = dom (𝑌(Inv‘𝐶)𝑋))
102, 1oppcbas 17762 . . 3 𝐵 = (Base‘𝑂)
112oppccat 17766 . . . 4 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
123, 11syl 17 . . 3 (𝜑𝑂 ∈ Cat)
13 oppciso.t . . 3 𝐽 = (Iso‘𝑂)
1410, 7, 12, 4, 5, 13isoval 17810 . 2 (𝜑 → (𝑋𝐽𝑌) = dom (𝑋(Inv‘𝑂)𝑌))
15 oppciso.s . . 3 𝐼 = (Iso‘𝐶)
161, 6, 3, 5, 4, 15isoval 17810 . 2 (𝜑 → (𝑌𝐼𝑋) = dom (𝑌(Inv‘𝐶)𝑋))
179, 14, 163eqtr4d 2786 1 (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  dom cdm 5684  cfv 6560  (class class class)co 7432  Basecbs 17248  Catccat 17708  oppCatcoppc 17755  Invcinv 17790  Isociso 17791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-hom 17322  df-cco 17323  df-cat 17712  df-cid 17713  df-oppc 17756  df-sect 17792  df-inv 17793  df-iso 17794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator