MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppciso Structured version   Visualization version   GIF version

Theorem oppciso 17043
Description: An isomorphism in the opposite category. See also remark 3.9 in [Adamek] p. 28. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
oppcsect.b 𝐵 = (Base‘𝐶)
oppcsect.o 𝑂 = (oppCat‘𝐶)
oppcsect.c (𝜑𝐶 ∈ Cat)
oppcsect.x (𝜑𝑋𝐵)
oppcsect.y (𝜑𝑌𝐵)
oppciso.s 𝐼 = (Iso‘𝐶)
oppciso.t 𝐽 = (Iso‘𝑂)
Assertion
Ref Expression
oppciso (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋))

Proof of Theorem oppciso
StepHypRef Expression
1 oppcsect.b . . . 4 𝐵 = (Base‘𝐶)
2 oppcsect.o . . . 4 𝑂 = (oppCat‘𝐶)
3 oppcsect.c . . . 4 (𝜑𝐶 ∈ Cat)
4 oppcsect.x . . . 4 (𝜑𝑋𝐵)
5 oppcsect.y . . . 4 (𝜑𝑌𝐵)
6 eqid 2825 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
7 eqid 2825 . . . 4 (Inv‘𝑂) = (Inv‘𝑂)
81, 2, 3, 4, 5, 6, 7oppcinv 17042 . . 3 (𝜑 → (𝑋(Inv‘𝑂)𝑌) = (𝑌(Inv‘𝐶)𝑋))
98dmeqd 5772 . 2 (𝜑 → dom (𝑋(Inv‘𝑂)𝑌) = dom (𝑌(Inv‘𝐶)𝑋))
102, 1oppcbas 16980 . . 3 𝐵 = (Base‘𝑂)
112oppccat 16984 . . . 4 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
123, 11syl 17 . . 3 (𝜑𝑂 ∈ Cat)
13 oppciso.t . . 3 𝐽 = (Iso‘𝑂)
1410, 7, 12, 4, 5, 13isoval 17027 . 2 (𝜑 → (𝑋𝐽𝑌) = dom (𝑋(Inv‘𝑂)𝑌))
15 oppciso.s . . 3 𝐼 = (Iso‘𝐶)
161, 6, 3, 5, 4, 15isoval 17027 . 2 (𝜑 → (𝑌𝐼𝑋) = dom (𝑌(Inv‘𝐶)𝑋))
179, 14, 163eqtr4d 2870 1 (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  dom cdm 5553  cfv 6351  (class class class)co 7151  Basecbs 16475  Catccat 16927  oppCatcoppc 16973  Invcinv 17007  Isociso 17008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-oppc 16974  df-sect 17009  df-inv 17010  df-iso 17011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator