![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsidmi | Structured version Visualization version GIF version |
Description: Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsidm.1 | ⊢ 𝐴 ∈ Sℋ |
Ref | Expression |
---|---|
shsidmi | ⊢ (𝐴 +ℋ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsidm.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
2 | 1, 1 | shseli 30836 | . . . 4 ⊢ (𝑥 ∈ (𝐴 +ℋ 𝐴) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +ℎ 𝑧)) |
3 | shaddcl 30737 | . . . . . . 7 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 +ℎ 𝑧) ∈ 𝐴) | |
4 | 1, 3 | mp3an1 1446 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 +ℎ 𝑧) ∈ 𝐴) |
5 | eleq1 2819 | . . . . . 6 ⊢ (𝑥 = (𝑦 +ℎ 𝑧) → (𝑥 ∈ 𝐴 ↔ (𝑦 +ℎ 𝑧) ∈ 𝐴)) | |
6 | 4, 5 | syl5ibrcom 246 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
7 | 6 | rexlimivv 3197 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴) |
8 | 2, 7 | sylbi 216 | . . 3 ⊢ (𝑥 ∈ (𝐴 +ℋ 𝐴) → 𝑥 ∈ 𝐴) |
9 | 8 | ssriv 3985 | . 2 ⊢ (𝐴 +ℋ 𝐴) ⊆ 𝐴 |
10 | 1, 1 | shsub1i 30892 | . 2 ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐴) |
11 | 9, 10 | eqssi 3997 | 1 ⊢ (𝐴 +ℋ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∃wrex 3068 (class class class)co 7411 +ℎ cva 30440 Sℋ csh 30448 +ℋ cph 30451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-hilex 30519 ax-hfvadd 30520 ax-hvcom 30521 ax-hvass 30522 ax-hv0cl 30523 ax-hvaddid 30524 ax-hfvmul 30525 ax-hvmulid 30526 ax-hvdistr2 30529 ax-hvmul0 30530 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-neg 11451 df-grpo 30013 df-ablo 30065 df-hvsub 30491 df-sh 30727 df-shs 30828 |
This theorem is referenced by: shslubi 30905 |
Copyright terms: Public domain | W3C validator |