Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shsidmi | Structured version Visualization version GIF version |
Description: Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsidm.1 | ⊢ 𝐴 ∈ Sℋ |
Ref | Expression |
---|---|
shsidmi | ⊢ (𝐴 +ℋ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsidm.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
2 | 1, 1 | shseli 29966 | . . . 4 ⊢ (𝑥 ∈ (𝐴 +ℋ 𝐴) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +ℎ 𝑧)) |
3 | shaddcl 29867 | . . . . . . 7 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 +ℎ 𝑧) ∈ 𝐴) | |
4 | 1, 3 | mp3an1 1447 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 +ℎ 𝑧) ∈ 𝐴) |
5 | eleq1 2824 | . . . . . 6 ⊢ (𝑥 = (𝑦 +ℎ 𝑧) → (𝑥 ∈ 𝐴 ↔ (𝑦 +ℎ 𝑧) ∈ 𝐴)) | |
6 | 4, 5 | syl5ibrcom 246 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
7 | 6 | rexlimivv 3192 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴) |
8 | 2, 7 | sylbi 216 | . . 3 ⊢ (𝑥 ∈ (𝐴 +ℋ 𝐴) → 𝑥 ∈ 𝐴) |
9 | 8 | ssriv 3936 | . 2 ⊢ (𝐴 +ℋ 𝐴) ⊆ 𝐴 |
10 | 1, 1 | shsub1i 30022 | . 2 ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐴) |
11 | 9, 10 | eqssi 3948 | 1 ⊢ (𝐴 +ℋ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 (class class class)co 7337 +ℎ cva 29570 Sℋ csh 29578 +ℋ cph 29581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-hilex 29649 ax-hfvadd 29650 ax-hvcom 29651 ax-hvass 29652 ax-hv0cl 29653 ax-hvaddid 29654 ax-hfvmul 29655 ax-hvmulid 29656 ax-hvdistr2 29659 ax-hvmul0 29660 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-ltxr 11115 df-sub 11308 df-neg 11309 df-grpo 29143 df-ablo 29195 df-hvsub 29621 df-sh 29857 df-shs 29958 |
This theorem is referenced by: shslubi 30035 |
Copyright terms: Public domain | W3C validator |