![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsidmi | Structured version Visualization version GIF version |
Description: Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsidm.1 | ⊢ 𝐴 ∈ Sℋ |
Ref | Expression |
---|---|
shsidmi | ⊢ (𝐴 +ℋ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsidm.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
2 | 1, 1 | shseli 31348 | . . . 4 ⊢ (𝑥 ∈ (𝐴 +ℋ 𝐴) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +ℎ 𝑧)) |
3 | shaddcl 31249 | . . . . . . 7 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 +ℎ 𝑧) ∈ 𝐴) | |
4 | 1, 3 | mp3an1 1448 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 +ℎ 𝑧) ∈ 𝐴) |
5 | eleq1 2832 | . . . . . 6 ⊢ (𝑥 = (𝑦 +ℎ 𝑧) → (𝑥 ∈ 𝐴 ↔ (𝑦 +ℎ 𝑧) ∈ 𝐴)) | |
6 | 4, 5 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴)) |
7 | 6 | rexlimivv 3207 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +ℎ 𝑧) → 𝑥 ∈ 𝐴) |
8 | 2, 7 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ (𝐴 +ℋ 𝐴) → 𝑥 ∈ 𝐴) |
9 | 8 | ssriv 4012 | . 2 ⊢ (𝐴 +ℋ 𝐴) ⊆ 𝐴 |
10 | 1, 1 | shsub1i 31404 | . 2 ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐴) |
11 | 9, 10 | eqssi 4025 | 1 ⊢ (𝐴 +ℋ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 (class class class)co 7448 +ℎ cva 30952 Sℋ csh 30960 +ℋ cph 30963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvdistr2 31041 ax-hvmul0 31042 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-grpo 30525 df-ablo 30577 df-hvsub 31003 df-sh 31239 df-shs 31340 |
This theorem is referenced by: shslubi 31417 |
Copyright terms: Public domain | W3C validator |