HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsidmi Structured version   Visualization version   GIF version

Theorem shsidmi 28798
Description: Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
shsidm.1 𝐴S
Assertion
Ref Expression
shsidmi (𝐴 + 𝐴) = 𝐴

Proof of Theorem shsidmi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shsidm.1 . . . . 5 𝐴S
21, 1shseli 28730 . . . 4 (𝑥 ∈ (𝐴 + 𝐴) ↔ ∃𝑦𝐴𝑧𝐴 𝑥 = (𝑦 + 𝑧))
3 shaddcl 28629 . . . . . . 7 ((𝐴S𝑦𝐴𝑧𝐴) → (𝑦 + 𝑧) ∈ 𝐴)
41, 3mp3an1 1578 . . . . . 6 ((𝑦𝐴𝑧𝐴) → (𝑦 + 𝑧) ∈ 𝐴)
5 eleq1 2894 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑥𝐴 ↔ (𝑦 + 𝑧) ∈ 𝐴))
64, 5syl5ibrcom 239 . . . . 5 ((𝑦𝐴𝑧𝐴) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
76rexlimivv 3246 . . . 4 (∃𝑦𝐴𝑧𝐴 𝑥 = (𝑦 + 𝑧) → 𝑥𝐴)
82, 7sylbi 209 . . 3 (𝑥 ∈ (𝐴 + 𝐴) → 𝑥𝐴)
98ssriv 3831 . 2 (𝐴 + 𝐴) ⊆ 𝐴
101, 1shsub1i 28786 . 2 𝐴 ⊆ (𝐴 + 𝐴)
119, 10eqssi 3843 1 (𝐴 + 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1658  wcel 2166  wrex 3118  (class class class)co 6905   + cva 28332   S csh 28340   + cph 28343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-hilex 28411  ax-hfvadd 28412  ax-hvcom 28413  ax-hvass 28414  ax-hv0cl 28415  ax-hvaddid 28416  ax-hfvmul 28417  ax-hvmulid 28418  ax-hvdistr2 28421  ax-hvmul0 28422
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-ltxr 10396  df-sub 10587  df-neg 10588  df-grpo 27903  df-ablo 27955  df-hvsub 28383  df-sh 28619  df-shs 28722
This theorem is referenced by:  shslubi  28799
  Copyright terms: Public domain W3C validator