MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscan2dlem Structured version   Visualization version   GIF version

Theorem mulscan2dlem 28118
Description: Lemma for mulscan2d 28119. Cancellation of multiplication when the right term is positive. (Contributed by Scott Fenton, 10-Mar-2025.)
Hypotheses
Ref Expression
mulscan2d.1 (𝜑𝐴 No )
mulscan2d.2 (𝜑𝐵 No )
mulscan2d.3 (𝜑𝐶 No )
mulscan2dlem.1 (𝜑 → 0s <s 𝐶)
Assertion
Ref Expression
mulscan2dlem (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem mulscan2dlem
StepHypRef Expression
1 mulscan2d.1 . . . 4 (𝜑𝐴 No )
2 mulscan2d.2 . . . 4 (𝜑𝐵 No )
3 mulscan2d.3 . . . 4 (𝜑𝐶 No )
4 mulscan2dlem.1 . . . 4 (𝜑 → 0s <s 𝐶)
51, 2, 3, 4slemul1d 28115 . . 3 (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)))
62, 1, 3, 4slemul1d 28115 . . 3 (𝜑 → (𝐵 ≤s 𝐴 ↔ (𝐵 ·s 𝐶) ≤s (𝐴 ·s 𝐶)))
75, 6anbi12d 632 . 2 (𝜑 → ((𝐴 ≤s 𝐵𝐵 ≤s 𝐴) ↔ ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ∧ (𝐵 ·s 𝐶) ≤s (𝐴 ·s 𝐶))))
8 sletri3 27695 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵𝐵 ≤s 𝐴)))
91, 2, 8syl2anc 584 . 2 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵𝐵 ≤s 𝐴)))
101, 3mulscld 28075 . . 3 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
112, 3mulscld 28075 . . 3 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
12 sletri3 27695 . . 3 (((𝐴 ·s 𝐶) ∈ No ∧ (𝐵 ·s 𝐶) ∈ No ) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ∧ (𝐵 ·s 𝐶) ≤s (𝐴 ·s 𝐶))))
1310, 11, 12syl2anc 584 . 2 (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ∧ (𝐵 ·s 𝐶) ≤s (𝐴 ·s 𝐶))))
147, 9, 133bitr4rd 312 1 (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  (class class class)co 7352   No csur 27579   <s cslt 27580   ≤s csle 27684   0s c0s 27767   ·s cmuls 28046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec 27882  df-norec2 27893  df-adds 27904  df-negs 27964  df-subs 27965  df-muls 28047
This theorem is referenced by:  mulscan2d  28119
  Copyright terms: Public domain W3C validator