MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscan2dlem Structured version   Visualization version   GIF version

Theorem mulscan2dlem 28088
Description: Lemma for mulscan2d 28089. Cancellation of multiplication when the right term is positive. (Contributed by Scott Fenton, 10-Mar-2025.)
Hypotheses
Ref Expression
mulscan2d.1 (𝜑𝐴 No )
mulscan2d.2 (𝜑𝐵 No )
mulscan2d.3 (𝜑𝐶 No )
mulscan2dlem.1 (𝜑 → 0s <s 𝐶)
Assertion
Ref Expression
mulscan2dlem (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem mulscan2dlem
StepHypRef Expression
1 mulscan2d.1 . . . 4 (𝜑𝐴 No )
2 mulscan2d.2 . . . 4 (𝜑𝐵 No )
3 mulscan2d.3 . . . 4 (𝜑𝐶 No )
4 mulscan2dlem.1 . . . 4 (𝜑 → 0s <s 𝐶)
51, 2, 3, 4slemul1d 28085 . . 3 (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)))
62, 1, 3, 4slemul1d 28085 . . 3 (𝜑 → (𝐵 ≤s 𝐴 ↔ (𝐵 ·s 𝐶) ≤s (𝐴 ·s 𝐶)))
75, 6anbi12d 632 . 2 (𝜑 → ((𝐴 ≤s 𝐵𝐵 ≤s 𝐴) ↔ ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ∧ (𝐵 ·s 𝐶) ≤s (𝐴 ·s 𝐶))))
8 sletri3 27674 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵𝐵 ≤s 𝐴)))
91, 2, 8syl2anc 584 . 2 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵𝐵 ≤s 𝐴)))
101, 3mulscld 28045 . . 3 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
112, 3mulscld 28045 . . 3 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
12 sletri3 27674 . . 3 (((𝐴 ·s 𝐶) ∈ No ∧ (𝐵 ·s 𝐶) ∈ No ) → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ∧ (𝐵 ·s 𝐶) ≤s (𝐴 ·s 𝐶))))
1310, 11, 12syl2anc 584 . 2 (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ∧ (𝐵 ·s 𝐶) ≤s (𝐴 ·s 𝐶))))
147, 9, 133bitr4rd 312 1 (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390   No csur 27558   <s cslt 27559   ≤s csle 27663   0s c0s 27741   ·s cmuls 28016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017
This theorem is referenced by:  mulscan2d  28089
  Copyright terms: Public domain W3C validator