![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addscan2 | Structured version Visualization version GIF version |
Description: Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
Ref | Expression |
---|---|
addscan2 | âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðī +s ðķ) = (ðĩ +s ðķ) â ðī = ðĩ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sleadd1 27472 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðī âĪs ðĩ â (ðī +s ðķ) âĪs (ðĩ +s ðķ))) | |
2 | sleadd1 27472 | . . . 4 âĒ ((ðĩ â No ⧠ðī â No ⧠ðķ â No ) â (ðĩ âĪs ðī â (ðĩ +s ðķ) âĪs (ðī +s ðķ))) | |
3 | 2 | 3com12 1124 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðĩ âĪs ðī â (ðĩ +s ðķ) âĪs (ðī +s ðķ))) |
4 | 1, 3 | anbi12d 632 | . 2 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðī âĪs ðĩ ⧠ðĩ âĪs ðī) â ((ðī +s ðķ) âĪs (ðĩ +s ðķ) ⧠(ðĩ +s ðķ) âĪs (ðī +s ðķ)))) |
5 | sletri3 27258 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ) â (ðī = ðĩ â (ðī âĪs ðĩ ⧠ðĩ âĪs ðī))) | |
6 | 5 | 3adant3 1133 | . 2 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðī = ðĩ â (ðī âĪs ðĩ ⧠ðĩ âĪs ðī))) |
7 | addscl 27465 | . . . 4 âĒ ((ðī â No ⧠ðķ â No ) â (ðī +s ðķ) â No ) | |
8 | 7 | 3adant2 1132 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðī +s ðķ) â No ) |
9 | addscl 27465 | . . . 4 âĒ ((ðĩ â No ⧠ðķ â No ) â (ðĩ +s ðķ) â No ) | |
10 | 9 | 3adant1 1131 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðĩ +s ðķ) â No ) |
11 | sletri3 27258 | . . 3 âĒ (((ðī +s ðķ) â No ⧠(ðĩ +s ðķ) â No ) â ((ðī +s ðķ) = (ðĩ +s ðķ) â ((ðī +s ðķ) âĪs (ðĩ +s ðķ) ⧠(ðĩ +s ðķ) âĪs (ðī +s ðķ)))) | |
12 | 8, 10, 11 | syl2anc 585 | . 2 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðī +s ðķ) = (ðĩ +s ðķ) â ((ðī +s ðķ) âĪs (ðĩ +s ðķ) ⧠(ðĩ +s ðķ) âĪs (ðī +s ðķ)))) |
13 | 4, 6, 12 | 3bitr4rd 312 | 1 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðī +s ðķ) = (ðĩ +s ðķ) â ðī = ðĩ)) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â wb 205 ⧠wa 397 ⧠w3a 1088 = wceq 1542 â wcel 2107 class class class wbr 5149 (class class class)co 7409 No csur 27143 âĪs csle 27247 +s cadds 27443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-1o 8466 df-2o 8467 df-nadd 8665 df-no 27146 df-slt 27147 df-bday 27148 df-sle 27248 df-sslt 27283 df-scut 27285 df-0s 27325 df-made 27342 df-old 27343 df-left 27345 df-right 27346 df-norec2 27433 df-adds 27444 |
This theorem is referenced by: addscan1 27477 addscan2d 27482 |
Copyright terms: Public domain | W3C validator |