| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cchhllem | Structured version Visualization version GIF version | ||
| Description: Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| cchhl.c | ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) |
| cchhllem.1 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| cchhllem.2 | ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) |
| cchhllem.3 | ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) |
| cchhllem.4 | ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) |
| Ref | Expression |
|---|---|
| cchhllem | ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cchhllem.1 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | cchhllem.4 | . . . 4 ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) | |
| 3 | 2 | necomi 2979 | . . 3 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
| 4 | 1, 3 | setsnid 17119 | . 2 ⊢ (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
| 5 | eqidd 2730 | . . . 4 ⊢ (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ)) | |
| 6 | ax-resscn 11066 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 7 | cnfldbas 21265 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 8 | 6, 7 | sseqtri 3984 | . . . . 5 ⊢ ℝ ⊆ (Base‘ℂfld) |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ (Base‘ℂfld)) |
| 10 | cchhllem.2 | . . . 4 ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) | |
| 11 | cchhllem.3 | . . . 4 ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) | |
| 12 | 5, 9, 1, 10, 11, 2 | sralem 21080 | . . 3 ⊢ (⊤ → (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ))) |
| 13 | 12 | mptru 1547 | . 2 ⊢ (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) |
| 14 | cchhl.c | . . 3 ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) | |
| 15 | 14 | fveq2i 6825 | . 2 ⊢ (𝐸‘𝐶) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
| 16 | 4, 13, 15 | 3eqtr4i 2762 | 1 ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ≠ wne 2925 ⊆ wss 3903 〈cop 4583 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ℂcc 11007 ℝcr 11008 · cmul 11014 ∗ccj 15003 sSet csts 17074 Slot cslot 17092 ndxcnx 17104 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 ·𝑖cip 17166 subringAlg csra 21075 ℂfldccnfld 21261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-sra 21077 df-cnfld 21262 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |