Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cchhllem | Structured version Visualization version GIF version |
Description: Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
cchhl.c | ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) |
cchhllem.1 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
cchhllem.2 | ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) |
cchhllem.3 | ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) |
cchhllem.4 | ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) |
Ref | Expression |
---|---|
cchhllem | ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cchhllem.1 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | cchhllem.4 | . . . 4 ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) | |
3 | 2 | necomi 2996 | . . 3 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
4 | 1, 3 | setsnid 17007 | . 2 ⊢ (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
5 | eqidd 2738 | . . . 4 ⊢ (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ)) | |
6 | ax-resscn 11033 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
7 | cnfldbas 20706 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
8 | 6, 7 | sseqtri 3971 | . . . . 5 ⊢ ℝ ⊆ (Base‘ℂfld) |
9 | 8 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ (Base‘ℂfld)) |
10 | cchhllem.2 | . . . 4 ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) | |
11 | cchhllem.3 | . . . 4 ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) | |
12 | 5, 9, 1, 10, 11, 2 | sralem 20544 | . . 3 ⊢ (⊤ → (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ))) |
13 | 12 | mptru 1548 | . 2 ⊢ (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) |
14 | cchhl.c | . . 3 ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) | |
15 | 14 | fveq2i 6832 | . 2 ⊢ (𝐸‘𝐶) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
16 | 4, 13, 15 | 3eqtr4i 2775 | 1 ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊤wtru 1542 ≠ wne 2941 ⊆ wss 3901 〈cop 4583 ‘cfv 6483 (class class class)co 7341 ∈ cmpo 7343 ℂcc 10974 ℝcr 10975 · cmul 10981 ∗ccj 14906 sSet csts 16961 Slot cslot 16979 ndxcnx 16991 Basecbs 17009 Scalarcsca 17062 ·𝑠 cvsca 17063 ·𝑖cip 17064 subringAlg csra 20535 ℂfldccnfld 20702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-fz 13345 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-mulr 17073 df-starv 17074 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-sra 20539 df-cnfld 20703 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |