MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srabase Structured version   Visualization version   GIF version

Theorem srabase 21091
Description: Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
srabase (𝜑 → (Base‘𝑊) = (Base‘𝐴))

Proof of Theorem srabase
StepHypRef Expression
1 srapart.a . 2 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
2 srapart.s . 2 (𝜑𝑆 ⊆ (Base‘𝑊))
3 baseid 17189 . 2 Base = Slot (Base‘ndx)
4 scandxnbasendx 17286 . 2 (Scalar‘ndx) ≠ (Base‘ndx)
5 vscandxnbasendx 17291 . 2 ( ·𝑠 ‘ndx) ≠ (Base‘ndx)
6 ipndxnbasendx 17302 . 2 (·𝑖‘ndx) ≠ (Base‘ndx)
71, 2, 3, 4, 5, 6sralem 21090 1 (𝜑 → (Base‘𝑊) = (Base‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3917  cfv 6514  Basecbs 17186  subringAlg csra 21085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-sca 17243  df-vsca 17244  df-ip 17245  df-sra 21087
This theorem is referenced by:  sratopn  21098  sraring  21100  sralmod  21101  sralmod0  21102  rlmbas  21107  frlmip  21694  sraassab  21784  sraassaOLD  21786  evls1maplmhm  22271  sranlm  24579  srabn  25267  rrxip  25297  gsumsra  32994  sra1r  33584  sradrng  33585  sraidom  33586  srasubrg  33587  resssra  33590  lsssra  33591  drgextlsp  33596  rlmdim  33612  rgmoddimOLD  33613  fedgmullem1  33632  fedgmullem2  33633  fedgmul  33634  extdg1id  33668  ccfldsrarelvec  33673  ccfldextdgrr  33674  fldextrspunlsplem  33675  fldextrspunlsp  33676  fldextrspunlem1  33677  fldextrspunfld  33678  algextdeglem4  33717
  Copyright terms: Public domain W3C validator