MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullsubc Structured version   Visualization version   GIF version

Theorem fullsubc 17115
Description: The full subcategory generated by a subset of objects is the category with these objects and the same morphisms as the original. The result is always a subcategory (and it is full, meaning that all morphisms of the original category between objects in the subcategory is also in the subcategory), see definition 4.1(2) of [Adamek] p. 48. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
fullsubc.b 𝐵 = (Base‘𝐶)
fullsubc.h 𝐻 = (Homf𝐶)
fullsubc.c (𝜑𝐶 ∈ Cat)
fullsubc.s (𝜑𝑆𝐵)
Assertion
Ref Expression
fullsubc (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶))

Proof of Theorem fullsubc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullsubc.h . . . . 5 𝐻 = (Homf𝐶)
2 fullsubc.b . . . . 5 𝐵 = (Base‘𝐶)
31, 2homffn 16958 . . . 4 𝐻 Fn (𝐵 × 𝐵)
42fvexi 6683 . . . 4 𝐵 ∈ V
5 sscres 17088 . . . 4 ((𝐻 Fn (𝐵 × 𝐵) ∧ 𝐵 ∈ V) → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻)
63, 4, 5mp2an 688 . . 3 (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻
76a1i 11 . 2 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻)
8 eqid 2826 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
9 eqid 2826 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
10 fullsubc.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
1110adantr 481 . . . . . 6 ((𝜑𝑥𝑆) → 𝐶 ∈ Cat)
12 fullsubc.s . . . . . . 7 (𝜑𝑆𝐵)
1312sselda 3971 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
142, 8, 9, 11, 13catidcl 16948 . . . . 5 ((𝜑𝑥𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
15 simpr 485 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥𝑆)
1615, 15ovresd 7309 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥𝐻𝑥))
171, 2, 8, 13, 13homfval 16957 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥𝐻𝑥) = (𝑥(Hom ‘𝐶)𝑥))
1816, 17eqtrd 2861 . . . . 5 ((𝜑𝑥𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥(Hom ‘𝐶)𝑥))
1914, 18eleqtrrd 2921 . . . 4 ((𝜑𝑥𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥))
20 eqid 2826 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
2111ad3antrrr 726 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
2213ad3antrrr 726 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝐵)
2312adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝑆𝐵)
2423sselda 3971 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑦𝐵)
2524adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝐵)
2625adantr 481 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
2723adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑆𝐵)
2827sselda 3971 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝐵)
2928adantr 481 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
30 simprl 767 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
31 simprr 769 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
322, 8, 20, 21, 22, 26, 29, 30, 31catcocl 16951 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
3315ad3antrrr 726 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝑆)
34 simplr 765 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝑆)
3533, 34ovresd 7309 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥𝐻𝑧))
361, 2, 8, 22, 29homfval 16957 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥𝐻𝑧) = (𝑥(Hom ‘𝐶)𝑧))
3735, 36eqtrd 2861 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥(Hom ‘𝐶)𝑧))
3832, 37eleqtrrd 2921 . . . . . . . 8 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
3938ralrimivva 3196 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
40 simplr 765 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑥𝑆)
41 simpr 485 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑦𝑆)
4240, 41ovresd 7309 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦))
4313adantr 481 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑥𝐵)
441, 2, 8, 43, 24homfval 16957 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4542, 44eqtrd 2861 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4645adantr 481 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦))
47 simplr 765 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝑆)
48 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝑆)
4947, 48ovresd 7309 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦𝐻𝑧))
501, 2, 8, 25, 28homfval 16957 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧))
5149, 50eqtrd 2861 . . . . . . . . 9 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦(Hom ‘𝐶)𝑧))
5251raleqdv 3421 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5346, 52raleqbidv 3407 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5439, 53mpbird 258 . . . . . 6 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5554ralrimiva 3187 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∀𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5655ralrimiva 3187 . . . 4 ((𝜑𝑥𝑆) → ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5719, 56jca 512 . . 3 ((𝜑𝑥𝑆) → (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5857ralrimiva 3187 . 2 (𝜑 → ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
59 xpss12 5569 . . . . 5 ((𝑆𝐵𝑆𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
6012, 12, 59syl2anc 584 . . . 4 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
61 fnssres 6469 . . . 4 ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
623, 60, 61sylancr 587 . . 3 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
631, 9, 20, 10, 62issubc2 17101 . 2 (𝜑 → ((𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶) ↔ ((𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻 ∧ ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))))
647, 58, 63mpbir2and 709 1 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wral 3143  Vcvv 3500  wss 3940  cop 4570   class class class wbr 5063   × cxp 5552  cres 5556   Fn wfn 6349  cfv 6354  (class class class)co 7150  Basecbs 16478  Hom chom 16571  compcco 16572  Catccat 16930  Idccid 16931  Homf chomf 16932  cat cssc 17072  Subcatcsubc 17074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-pm 8404  df-ixp 8456  df-cat 16934  df-cid 16935  df-homf 16936  df-ssc 17075  df-subc 17077
This theorem is referenced by:  resscat  17117  funcres2c  17166  ressffth  17203  funcsetcres2  17348
  Copyright terms: Public domain W3C validator