MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullsubc Structured version   Visualization version   GIF version

Theorem fullsubc 16862
Description: The full subcategory generated by a subset of objects is the category with these objects and the same morphisms as the original. The result is always a subcategory (and it is full, meaning that all morphisms of the original category between objects in the subcategory is also in the subcategory), see definition 4.1(2) of [Adamek] p. 48. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
fullsubc.b 𝐵 = (Base‘𝐶)
fullsubc.h 𝐻 = (Homf𝐶)
fullsubc.c (𝜑𝐶 ∈ Cat)
fullsubc.s (𝜑𝑆𝐵)
Assertion
Ref Expression
fullsubc (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶))

Proof of Theorem fullsubc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullsubc.h . . . . 5 𝐻 = (Homf𝐶)
2 fullsubc.b . . . . 5 𝐵 = (Base‘𝐶)
31, 2homffn 16705 . . . 4 𝐻 Fn (𝐵 × 𝐵)
42fvexi 6447 . . . 4 𝐵 ∈ V
5 sscres 16835 . . . 4 ((𝐻 Fn (𝐵 × 𝐵) ∧ 𝐵 ∈ V) → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻)
63, 4, 5mp2an 685 . . 3 (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻
76a1i 11 . 2 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻)
8 eqid 2825 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
9 eqid 2825 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
10 fullsubc.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
1110adantr 474 . . . . . 6 ((𝜑𝑥𝑆) → 𝐶 ∈ Cat)
12 fullsubc.s . . . . . . 7 (𝜑𝑆𝐵)
1312sselda 3827 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
142, 8, 9, 11, 13catidcl 16695 . . . . 5 ((𝜑𝑥𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
15 simpr 479 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥𝑆)
1615, 15ovresd 7061 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥𝐻𝑥))
171, 2, 8, 13, 13homfval 16704 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥𝐻𝑥) = (𝑥(Hom ‘𝐶)𝑥))
1816, 17eqtrd 2861 . . . . 5 ((𝜑𝑥𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥(Hom ‘𝐶)𝑥))
1914, 18eleqtrrd 2909 . . . 4 ((𝜑𝑥𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥))
20 eqid 2825 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
2111ad3antrrr 723 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
2213ad3antrrr 723 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝐵)
2312adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝑆𝐵)
2423sselda 3827 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑦𝐵)
2524adantr 474 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝐵)
2625adantr 474 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
2723adantr 474 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑆𝐵)
2827sselda 3827 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝐵)
2928adantr 474 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
30 simprl 789 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
31 simprr 791 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
322, 8, 20, 21, 22, 26, 29, 30, 31catcocl 16698 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
3315ad3antrrr 723 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝑆)
34 simplr 787 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝑆)
3533, 34ovresd 7061 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥𝐻𝑧))
361, 2, 8, 22, 29homfval 16704 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥𝐻𝑧) = (𝑥(Hom ‘𝐶)𝑧))
3735, 36eqtrd 2861 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥(Hom ‘𝐶)𝑧))
3832, 37eleqtrrd 2909 . . . . . . . 8 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
3938ralrimivva 3180 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
40 simplr 787 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑥𝑆)
41 simpr 479 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑦𝑆)
4240, 41ovresd 7061 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦))
4313adantr 474 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑥𝐵)
441, 2, 8, 43, 24homfval 16704 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4542, 44eqtrd 2861 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4645adantr 474 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦))
47 simplr 787 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝑆)
48 simpr 479 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝑆)
4947, 48ovresd 7061 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦𝐻𝑧))
501, 2, 8, 25, 28homfval 16704 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧))
5149, 50eqtrd 2861 . . . . . . . . 9 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦(Hom ‘𝐶)𝑧))
5251raleqdv 3356 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5346, 52raleqbidv 3364 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5439, 53mpbird 249 . . . . . 6 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5554ralrimiva 3175 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∀𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5655ralrimiva 3175 . . . 4 ((𝜑𝑥𝑆) → ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5719, 56jca 509 . . 3 ((𝜑𝑥𝑆) → (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5857ralrimiva 3175 . 2 (𝜑 → ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
59 xpss12 5357 . . . . 5 ((𝑆𝐵𝑆𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
6012, 12, 59syl2anc 581 . . . 4 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
61 fnssres 6237 . . . 4 ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
623, 60, 61sylancr 583 . . 3 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
631, 9, 20, 10, 62issubc2 16848 . 2 (𝜑 → ((𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶) ↔ ((𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻 ∧ ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))))
647, 58, 63mpbir2and 706 1 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wral 3117  Vcvv 3414  wss 3798  cop 4403   class class class wbr 4873   × cxp 5340  cres 5344   Fn wfn 6118  cfv 6123  (class class class)co 6905  Basecbs 16222  Hom chom 16316  compcco 16317  Catccat 16677  Idccid 16678  Homf chomf 16679  cat cssc 16819  Subcatcsubc 16821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-pm 8125  df-ixp 8176  df-cat 16681  df-cid 16682  df-homf 16683  df-ssc 16822  df-subc 16824
This theorem is referenced by:  resscat  16864  funcres2c  16913  ressffth  16950  funcsetcres2  17095
  Copyright terms: Public domain W3C validator