Step | Hyp | Ref
| Expression |
1 | | fullsubc.h |
. . . . 5
⊢ 𝐻 = (Homf
‘𝐶) |
2 | | fullsubc.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
3 | 1, 2 | homffn 17319 |
. . . 4
⊢ 𝐻 Fn (𝐵 × 𝐵) |
4 | 2 | fvexi 6770 |
. . . 4
⊢ 𝐵 ∈ V |
5 | | sscres 17452 |
. . . 4
⊢ ((𝐻 Fn (𝐵 × 𝐵) ∧ 𝐵 ∈ V) → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻) |
6 | 3, 4, 5 | mp2an 688 |
. . 3
⊢ (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻 |
7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻) |
8 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
9 | | eqid 2738 |
. . . . . 6
⊢
(Id‘𝐶) =
(Id‘𝐶) |
10 | | fullsubc.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ Cat) |
11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐶 ∈ Cat) |
12 | | fullsubc.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
13 | 12 | sselda 3917 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
14 | 2, 8, 9, 11, 13 | catidcl 17308 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
15 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
16 | 15, 15 | ovresd 7417 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥𝐻𝑥)) |
17 | 1, 2, 8, 13, 13 | homfval 17318 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝐻𝑥) = (𝑥(Hom ‘𝐶)𝑥)) |
18 | 16, 17 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥(Hom ‘𝐶)𝑥)) |
19 | 14, 18 | eleqtrrd 2842 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥)) |
20 | | eqid 2738 |
. . . . . . . . . 10
⊢
(comp‘𝐶) =
(comp‘𝐶) |
21 | 11 | ad3antrrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat) |
22 | 13 | ad3antrrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ 𝐵) |
23 | 12 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
24 | 23 | sselda 3917 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
25 | 24 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ 𝐵) |
27 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
28 | 27 | sselda 3917 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝐵) |
29 | 28 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ 𝐵) |
30 | | simprl 767 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
31 | | simprr 769 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
32 | 2, 8, 20, 21, 22, 26, 29, 30, 31 | catcocl 17311 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
33 | 15 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ 𝑆) |
34 | | simplr 765 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ 𝑆) |
35 | 33, 34 | ovresd 7417 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥𝐻𝑧)) |
36 | 1, 2, 8, 22, 29 | homfval 17318 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥𝐻𝑧) = (𝑥(Hom ‘𝐶)𝑧)) |
37 | 35, 36 | eqtrd 2778 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥(Hom ‘𝐶)𝑧)) |
38 | 32, 37 | eleqtrrd 2842 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)) |
39 | 38 | ralrimivva 3114 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)) |
40 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
41 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) |
42 | 40, 41 | ovresd 7417 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦)) |
43 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
44 | 1, 2, 8, 43, 24 | homfval 17318 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
45 | 42, 44 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
46 | 45 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
47 | | simplr 765 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑦 ∈ 𝑆) |
48 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑆) |
49 | 47, 48 | ovresd 7417 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦𝐻𝑧)) |
50 | 1, 2, 8, 25, 28 | homfval 17318 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧)) |
51 | 49, 50 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦(Hom ‘𝐶)𝑧)) |
52 | 51 | raleqdv 3339 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))) |
53 | 46, 52 | raleqbidv 3327 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))) |
54 | 39, 53 | mpbird 256 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)) |
55 | 54 | ralrimiva 3107 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)) |
56 | 55 | ralrimiva 3107 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)) |
57 | 19, 56 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))) |
58 | 57 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))) |
59 | | xpss12 5595 |
. . . . 5
⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) |
60 | 12, 12, 59 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) |
61 | | fnssres 6539 |
. . . 4
⊢ ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
62 | 3, 60, 61 | sylancr 586 |
. . 3
⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
63 | 1, 9, 20, 10, 62 | issubc2 17467 |
. 2
⊢ (𝜑 → ((𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶) ↔ ((𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))))) |
64 | 7, 58, 63 | mpbir2and 709 |
1
⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶)) |