MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullsubc Structured version   Visualization version   GIF version

Theorem fullsubc 17795
Description: The full subcategory generated by a subset of objects is the category with these objects and the same morphisms as the original. The result is always a subcategory (and it is full, meaning that all morphisms of the original category between objects in the subcategory is also in the subcategory), see definition 4.1(2) of [Adamek] p. 48. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
fullsubc.b 𝐵 = (Base‘𝐶)
fullsubc.h 𝐻 = (Homf𝐶)
fullsubc.c (𝜑𝐶 ∈ Cat)
fullsubc.s (𝜑𝑆𝐵)
Assertion
Ref Expression
fullsubc (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶))

Proof of Theorem fullsubc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullsubc.h . . . . 5 𝐻 = (Homf𝐶)
2 fullsubc.b . . . . 5 𝐵 = (Base‘𝐶)
31, 2homffn 17632 . . . 4 𝐻 Fn (𝐵 × 𝐵)
42fvexi 6901 . . . 4 𝐵 ∈ V
5 sscres 17765 . . . 4 ((𝐻 Fn (𝐵 × 𝐵) ∧ 𝐵 ∈ V) → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻)
63, 4, 5mp2an 691 . . 3 (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻
76a1i 11 . 2 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻)
8 eqid 2733 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
9 eqid 2733 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
10 fullsubc.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
1110adantr 482 . . . . . 6 ((𝜑𝑥𝑆) → 𝐶 ∈ Cat)
12 fullsubc.s . . . . . . 7 (𝜑𝑆𝐵)
1312sselda 3980 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
142, 8, 9, 11, 13catidcl 17621 . . . . 5 ((𝜑𝑥𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
15 simpr 486 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥𝑆)
1615, 15ovresd 7568 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥𝐻𝑥))
171, 2, 8, 13, 13homfval 17631 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥𝐻𝑥) = (𝑥(Hom ‘𝐶)𝑥))
1816, 17eqtrd 2773 . . . . 5 ((𝜑𝑥𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥(Hom ‘𝐶)𝑥))
1914, 18eleqtrrd 2837 . . . 4 ((𝜑𝑥𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥))
20 eqid 2733 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
2111ad3antrrr 729 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
2213ad3antrrr 729 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝐵)
2312adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝑆𝐵)
2423sselda 3980 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑦𝐵)
2524adantr 482 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝐵)
2625adantr 482 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
2723adantr 482 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑆𝐵)
2827sselda 3980 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝐵)
2928adantr 482 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
30 simprl 770 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
31 simprr 772 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
322, 8, 20, 21, 22, 26, 29, 30, 31catcocl 17624 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
3315ad3antrrr 729 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝑆)
34 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝑆)
3533, 34ovresd 7568 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥𝐻𝑧))
361, 2, 8, 22, 29homfval 17631 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥𝐻𝑧) = (𝑥(Hom ‘𝐶)𝑧))
3735, 36eqtrd 2773 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥(Hom ‘𝐶)𝑧))
3832, 37eleqtrrd 2837 . . . . . . . 8 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
3938ralrimivva 3201 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
40 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑥𝑆)
41 simpr 486 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑦𝑆)
4240, 41ovresd 7568 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦))
4313adantr 482 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑥𝐵)
441, 2, 8, 43, 24homfval 17631 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4542, 44eqtrd 2773 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4645adantr 482 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦))
47 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝑆)
48 simpr 486 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝑆)
4947, 48ovresd 7568 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦𝐻𝑧))
501, 2, 8, 25, 28homfval 17631 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧))
5149, 50eqtrd 2773 . . . . . . . . 9 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦(Hom ‘𝐶)𝑧))
5251raleqdv 3326 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5346, 52raleqbidv 3343 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5439, 53mpbird 257 . . . . . 6 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5554ralrimiva 3147 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∀𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5655ralrimiva 3147 . . . 4 ((𝜑𝑥𝑆) → ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5719, 56jca 513 . . 3 ((𝜑𝑥𝑆) → (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5857ralrimiva 3147 . 2 (𝜑 → ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
59 xpss12 5689 . . . . 5 ((𝑆𝐵𝑆𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
6012, 12, 59syl2anc 585 . . . 4 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
61 fnssres 6669 . . . 4 ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
623, 60, 61sylancr 588 . . 3 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
631, 9, 20, 10, 62issubc2 17781 . 2 (𝜑 → ((𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶) ↔ ((𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻 ∧ ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))))
647, 58, 63mpbir2and 712 1 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  wss 3946  cop 4632   class class class wbr 5146   × cxp 5672  cres 5676   Fn wfn 6534  cfv 6539  (class class class)co 7403  Basecbs 17139  Hom chom 17203  compcco 17204  Catccat 17603  Idccid 17604  Homf chomf 17605  cat cssc 17749  Subcatcsubc 17751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7969  df-2nd 7970  df-pm 8818  df-ixp 8887  df-cat 17607  df-cid 17608  df-homf 17609  df-ssc 17752  df-subc 17754
This theorem is referenced by:  resscat  17797  funcres2c  17847  ressffth  17884  funcsetcres2  18038
  Copyright terms: Public domain W3C validator