Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit2 Structured version   Visualization version   GIF version

Theorem lincresunit2 48454
Description: Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠
Allowed substitution hints:   𝑅(𝑠)   𝐺(𝑠)   𝑍(𝑠)

Proof of Theorem lincresunit2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difexg 5299 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
213ad2ant1 1133 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
32adantl 481 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝑆 ∖ {𝑋}) ∈ V)
43adantr 480 . . . . . . . 8 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝑆 ∖ {𝑋}) ∈ V)
5 lincresunit.g . . . . . . . . 9 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
6 mptexg 7213 . . . . . . . . 9 ((𝑆 ∖ {𝑋}) ∈ V → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))) ∈ V)
75, 6eqeltrid 2838 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∈ V → 𝐺 ∈ V)
84, 7syl 17 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐺 ∈ V)
95funmpt2 6575 . . . . . . . 8 Fun 𝐺
109a1i 11 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → Fun 𝐺)
11 lincresunit.0 . . . . . . . . 9 0 = (0g𝑅)
1211fvexi 6890 . . . . . . . 8 0 ∈ V
1312a1i 11 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 0 ∈ V)
14 simpr 484 . . . . . . . 8 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp 0 )
1514fsuppimpd 9381 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝐹 supp 0 ) ∈ Fin)
16 simplr 768 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
17 simpll 766 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
18 eldifi 4106 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝑆)
1918adantl 481 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑠𝑆)
20 lincresunit.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑀)
21 lincresunit.r . . . . . . . . . . . . . 14 𝑅 = (Scalar‘𝑀)
22 lincresunit.e . . . . . . . . . . . . . 14 𝐸 = (Base‘𝑅)
23 lincresunit.u . . . . . . . . . . . . . 14 𝑈 = (Unit‘𝑅)
24 lincresunit.z . . . . . . . . . . . . . 14 𝑍 = (0g𝑀)
25 lincresunit.n . . . . . . . . . . . . . 14 𝑁 = (invg𝑅)
26 lincresunit.i . . . . . . . . . . . . . 14 𝐼 = (invr𝑅)
27 lincresunit.t . . . . . . . . . . . . . 14 · = (.r𝑅)
2820, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem2 48452 . . . . . . . . . . . . 13 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑠𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
2916, 17, 19, 28syl21anc 837 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
3029ralrimiva 3132 . . . . . . . . . . 11 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ∀𝑠 ∈ (𝑆 ∖ {𝑋})((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
315fnmpt 6678 . . . . . . . . . . 11 (∀𝑠 ∈ (𝑆 ∖ {𝑋})((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸𝐺 Fn (𝑆 ∖ {𝑋}))
3230, 31syl 17 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝐺 Fn (𝑆 ∖ {𝑋}))
33 elmapfn 8879 . . . . . . . . . . . 12 (𝐹 ∈ (𝐸m 𝑆) → 𝐹 Fn 𝑆)
3433adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → 𝐹 Fn 𝑆)
3534adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝐹 Fn 𝑆)
3632, 35jca 511 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆))
37 difssd 4112 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝑆 ∖ {𝑋}) ⊆ 𝑆)
38 simpr1 1195 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝑆 ∈ 𝒫 𝐵)
3912a1i 11 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 0 ∈ V)
4037, 38, 393jca 1128 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V))
41 fveq2 6876 . . . . . . . . . . . . . 14 (𝑠 = 𝑥 → (𝐹𝑠) = (𝐹𝑥))
4241oveq2d 7421 . . . . . . . . . . . . 13 (𝑠 = 𝑥 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
43 simplr 768 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝑥 ∈ (𝑆 ∖ {𝑋}))
44 simpllr 775 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
45 simpll 766 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
4645adantr 480 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
47 eldifi 4106 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑆 ∖ {𝑋}) → 𝑥𝑆)
4847adantl 481 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → 𝑥𝑆)
4948adantr 480 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝑥𝑆)
5020, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem2 48452 . . . . . . . . . . . . . 14 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑥𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) ∈ 𝐸)
5144, 46, 49, 50syl21anc 837 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) ∈ 𝐸)
525, 42, 43, 51fvmptd3 7009 . . . . . . . . . . . 12 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐺𝑥) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
53 oveq2 7413 . . . . . . . . . . . . 13 ((𝐹𝑥) = 0 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ))
5421lmodring 20825 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
55543ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
5655adantl 481 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝑅 ∈ Ring)
5720, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem1 48451 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
5857ancoms 458 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
5922, 27, 11ringrz 20254 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6056, 58, 59syl2anc 584 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6160adantr 480 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6253, 61sylan9eqr 2792 . . . . . . . . . . . 12 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) = 0 )
6352, 62eqtrd 2770 . . . . . . . . . . 11 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐺𝑥) = 0 )
6463ex 412 . . . . . . . . . 10 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → ((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ))
6564ralrimiva 3132 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ))
66 suppfnss 8188 . . . . . . . . . 10 (((𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆) ∧ ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V)) → (∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 )))
6766imp 406 . . . . . . . . 9 ((((𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆) ∧ ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V)) ∧ ∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 )) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
6836, 40, 65, 67syl21anc 837 . . . . . . . 8 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
6968adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
70 suppssfifsupp 9392 . . . . . . 7 (((𝐺 ∈ V ∧ Fun 𝐺0 ∈ V) ∧ ((𝐹 supp 0 ) ∈ Fin ∧ (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))) → 𝐺 finSupp 0 )
718, 10, 13, 15, 69, 70syl32anc 1380 . . . . . 6 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐺 finSupp 0 )
7271ex 412 . . . . 5 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐹 finSupp 0𝐺 finSupp 0 ))
7372ex 412 . . . 4 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹 finSupp 0𝐺 finSupp 0 )))
7473com23 86 . . 3 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → (𝐹 finSupp 0 → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝐺 finSupp 0 )))
75743impia 1117 . 2 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝐺 finSupp 0 ))
7675impcom 407 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cdif 3923  wss 3926  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  cmpt 5201  Fun wfun 6525   Fn wfn 6526  cfv 6531  (class class class)co 7405   supp csupp 8159  m cmap 8840  Fincfn 8959   finSupp cfsupp 9373  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274  0gc0g 17453  invgcminusg 18917  Ringcrg 20193  Unitcui 20315  invrcinvr 20347  LModclmod 20817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-lmod 20819
This theorem is referenced by:  lincresunit3lem2  48456  lincresunit3  48457  isldepslvec2  48461
  Copyright terms: Public domain W3C validator