Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit2 Structured version   Visualization version   GIF version

Theorem lincresunit2 43128
Description: Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠
Allowed substitution hints:   𝑅(𝑠)   𝐺(𝑠)   𝑍(𝑠)

Proof of Theorem lincresunit2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difexg 5035 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
213ad2ant1 1167 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
32adantl 475 . . . . . . . . 9 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝑆 ∖ {𝑋}) ∈ V)
43adantr 474 . . . . . . . 8 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝑆 ∖ {𝑋}) ∈ V)
5 lincresunit.g . . . . . . . . 9 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
6 mptexg 6745 . . . . . . . . 9 ((𝑆 ∖ {𝑋}) ∈ V → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))) ∈ V)
75, 6syl5eqel 2910 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∈ V → 𝐺 ∈ V)
84, 7syl 17 . . . . . . 7 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐺 ∈ V)
95funmpt2 6166 . . . . . . . 8 Fun 𝐺
109a1i 11 . . . . . . 7 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → Fun 𝐺)
11 lincresunit.0 . . . . . . . . 9 0 = (0g𝑅)
1211fvexi 6451 . . . . . . . 8 0 ∈ V
1312a1i 11 . . . . . . 7 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 0 ∈ V)
14 simpr 479 . . . . . . . 8 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp 0 )
1514fsuppimpd 8557 . . . . . . 7 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝐹 supp 0 ) ∈ Fin)
16 simplr 785 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
17 simpll 783 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
18 eldifi 3961 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝑆)
1918adantl 475 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑠𝑆)
20 lincresunit.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑀)
21 lincresunit.r . . . . . . . . . . . . . 14 𝑅 = (Scalar‘𝑀)
22 lincresunit.e . . . . . . . . . . . . . 14 𝐸 = (Base‘𝑅)
23 lincresunit.u . . . . . . . . . . . . . 14 𝑈 = (Unit‘𝑅)
24 lincresunit.z . . . . . . . . . . . . . 14 𝑍 = (0g𝑀)
25 lincresunit.n . . . . . . . . . . . . . 14 𝑁 = (invg𝑅)
26 lincresunit.i . . . . . . . . . . . . . 14 𝐼 = (invr𝑅)
27 lincresunit.t . . . . . . . . . . . . . 14 · = (.r𝑅)
2820, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem2 43126 . . . . . . . . . . . . 13 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑠𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
2916, 17, 19, 28syl21anc 871 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
3029ralrimiva 3175 . . . . . . . . . . 11 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ∀𝑠 ∈ (𝑆 ∖ {𝑋})((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
315fnmpt 6257 . . . . . . . . . . 11 (∀𝑠 ∈ (𝑆 ∖ {𝑋})((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸𝐺 Fn (𝑆 ∖ {𝑋}))
3230, 31syl 17 . . . . . . . . . 10 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝐺 Fn (𝑆 ∖ {𝑋}))
33 elmapfn 8150 . . . . . . . . . . . 12 (𝐹 ∈ (𝐸𝑚 𝑆) → 𝐹 Fn 𝑆)
3433adantr 474 . . . . . . . . . . 11 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → 𝐹 Fn 𝑆)
3534adantr 474 . . . . . . . . . 10 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝐹 Fn 𝑆)
3632, 35jca 507 . . . . . . . . 9 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆))
37 difssd 3967 . . . . . . . . . 10 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝑆 ∖ {𝑋}) ⊆ 𝑆)
38 simpr1 1252 . . . . . . . . . 10 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝑆 ∈ 𝒫 𝐵)
3912a1i 11 . . . . . . . . . 10 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 0 ∈ V)
4037, 38, 393jca 1162 . . . . . . . . 9 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V))
41 fveq2 6437 . . . . . . . . . . . . . 14 (𝑠 = 𝑥 → (𝐹𝑠) = (𝐹𝑥))
4241oveq2d 6926 . . . . . . . . . . . . 13 (𝑠 = 𝑥 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
43 simplr 785 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝑥 ∈ (𝑆 ∖ {𝑋}))
44 simpllr 793 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
45 simpll 783 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
4645adantr 474 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
47 eldifi 3961 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑆 ∖ {𝑋}) → 𝑥𝑆)
4847adantl 475 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → 𝑥𝑆)
4948adantr 474 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝑥𝑆)
5020, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem2 43126 . . . . . . . . . . . . . 14 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑥𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) ∈ 𝐸)
5144, 46, 49, 50syl21anc 871 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) ∈ 𝐸)
525, 42, 43, 51fvmptd3 6555 . . . . . . . . . . . 12 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐺𝑥) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
53 oveq2 6918 . . . . . . . . . . . . 13 ((𝐹𝑥) = 0 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ))
5421lmodring 19234 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
55543ad2ant2 1168 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
5655adantl 475 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝑅 ∈ Ring)
5720, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem1 43125 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
5857ancoms 452 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
5922, 27, 11ringrz 18949 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6056, 58, 59syl2anc 579 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6160adantr 474 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6253, 61sylan9eqr 2883 . . . . . . . . . . . 12 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) = 0 )
6352, 62eqtrd 2861 . . . . . . . . . . 11 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐺𝑥) = 0 )
6463ex 403 . . . . . . . . . 10 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → ((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ))
6564ralrimiva 3175 . . . . . . . . 9 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ))
66 suppfnss 7589 . . . . . . . . . 10 (((𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆) ∧ ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V)) → (∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 )))
6766imp 397 . . . . . . . . 9 ((((𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆) ∧ ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V)) ∧ ∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 )) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
6836, 40, 65, 67syl21anc 871 . . . . . . . 8 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
6968adantr 474 . . . . . . 7 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
70 suppssfifsupp 8565 . . . . . . 7 (((𝐺 ∈ V ∧ Fun 𝐺0 ∈ V) ∧ ((𝐹 supp 0 ) ∈ Fin ∧ (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))) → 𝐺 finSupp 0 )
718, 10, 13, 15, 69, 70syl32anc 1501 . . . . . 6 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐺 finSupp 0 )
7271ex 403 . . . . 5 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐹 finSupp 0𝐺 finSupp 0 ))
7372ex 403 . . . 4 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹 finSupp 0𝐺 finSupp 0 )))
7473com23 86 . . 3 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → (𝐹 finSupp 0 → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝐺 finSupp 0 )))
75743impia 1149 . 2 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝐺 finSupp 0 ))
7675impcom 398 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  cdif 3795  wss 3798  𝒫 cpw 4380  {csn 4399   class class class wbr 4875  cmpt 4954  Fun wfun 6121   Fn wfn 6122  cfv 6127  (class class class)co 6910   supp csupp 7564  𝑚 cmap 8127  Fincfn 8228   finSupp cfsupp 8550  Basecbs 16229  .rcmulr 16313  Scalarcsca 16315  0gc0g 16460  invgcminusg 17784  Ringcrg 18908  Unitcui 19000  invrcinvr 19032  LModclmod 19226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-mgp 18851  df-ur 18863  df-ring 18910  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-lmod 19228
This theorem is referenced by:  lincresunit3lem2  43130  lincresunit3  43131  isldepslvec2  43135
  Copyright terms: Public domain W3C validator