Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit2 Structured version   Visualization version   GIF version

Theorem lincresunit2 44887
Description: Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠
Allowed substitution hints:   𝑅(𝑠)   𝐺(𝑠)   𝑍(𝑠)

Proof of Theorem lincresunit2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difexg 5195 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
213ad2ant1 1130 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
32adantl 485 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝑆 ∖ {𝑋}) ∈ V)
43adantr 484 . . . . . . . 8 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝑆 ∖ {𝑋}) ∈ V)
5 lincresunit.g . . . . . . . . 9 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
6 mptexg 6961 . . . . . . . . 9 ((𝑆 ∖ {𝑋}) ∈ V → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))) ∈ V)
75, 6eqeltrid 2894 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∈ V → 𝐺 ∈ V)
84, 7syl 17 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐺 ∈ V)
95funmpt2 6363 . . . . . . . 8 Fun 𝐺
109a1i 11 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → Fun 𝐺)
11 lincresunit.0 . . . . . . . . 9 0 = (0g𝑅)
1211fvexi 6659 . . . . . . . 8 0 ∈ V
1312a1i 11 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 0 ∈ V)
14 simpr 488 . . . . . . . 8 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp 0 )
1514fsuppimpd 8824 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝐹 supp 0 ) ∈ Fin)
16 simplr 768 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
17 simpll 766 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
18 eldifi 4054 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝑆)
1918adantl 485 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑠𝑆)
20 lincresunit.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑀)
21 lincresunit.r . . . . . . . . . . . . . 14 𝑅 = (Scalar‘𝑀)
22 lincresunit.e . . . . . . . . . . . . . 14 𝐸 = (Base‘𝑅)
23 lincresunit.u . . . . . . . . . . . . . 14 𝑈 = (Unit‘𝑅)
24 lincresunit.z . . . . . . . . . . . . . 14 𝑍 = (0g𝑀)
25 lincresunit.n . . . . . . . . . . . . . 14 𝑁 = (invg𝑅)
26 lincresunit.i . . . . . . . . . . . . . 14 𝐼 = (invr𝑅)
27 lincresunit.t . . . . . . . . . . . . . 14 · = (.r𝑅)
2820, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem2 44885 . . . . . . . . . . . . 13 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑠𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
2916, 17, 19, 28syl21anc 836 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
3029ralrimiva 3149 . . . . . . . . . . 11 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ∀𝑠 ∈ (𝑆 ∖ {𝑋})((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
315fnmpt 6460 . . . . . . . . . . 11 (∀𝑠 ∈ (𝑆 ∖ {𝑋})((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸𝐺 Fn (𝑆 ∖ {𝑋}))
3230, 31syl 17 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝐺 Fn (𝑆 ∖ {𝑋}))
33 elmapfn 8412 . . . . . . . . . . . 12 (𝐹 ∈ (𝐸m 𝑆) → 𝐹 Fn 𝑆)
3433adantr 484 . . . . . . . . . . 11 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → 𝐹 Fn 𝑆)
3534adantr 484 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝐹 Fn 𝑆)
3632, 35jca 515 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆))
37 difssd 4060 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝑆 ∖ {𝑋}) ⊆ 𝑆)
38 simpr1 1191 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝑆 ∈ 𝒫 𝐵)
3912a1i 11 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 0 ∈ V)
4037, 38, 393jca 1125 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V))
41 fveq2 6645 . . . . . . . . . . . . . 14 (𝑠 = 𝑥 → (𝐹𝑠) = (𝐹𝑥))
4241oveq2d 7151 . . . . . . . . . . . . 13 (𝑠 = 𝑥 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
43 simplr 768 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝑥 ∈ (𝑆 ∖ {𝑋}))
44 simpllr 775 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
45 simpll 766 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
4645adantr 484 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
47 eldifi 4054 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑆 ∖ {𝑋}) → 𝑥𝑆)
4847adantl 485 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → 𝑥𝑆)
4948adantr 484 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝑥𝑆)
5020, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem2 44885 . . . . . . . . . . . . . 14 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑥𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) ∈ 𝐸)
5144, 46, 49, 50syl21anc 836 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) ∈ 𝐸)
525, 42, 43, 51fvmptd3 6768 . . . . . . . . . . . 12 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐺𝑥) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
53 oveq2 7143 . . . . . . . . . . . . 13 ((𝐹𝑥) = 0 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ))
5421lmodring 19635 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
55543ad2ant2 1131 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
5655adantl 485 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝑅 ∈ Ring)
5720, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem1 44884 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
5857ancoms 462 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
5922, 27, 11ringrz 19334 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6056, 58, 59syl2anc 587 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6160adantr 484 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6253, 61sylan9eqr 2855 . . . . . . . . . . . 12 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) = 0 )
6352, 62eqtrd 2833 . . . . . . . . . . 11 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐺𝑥) = 0 )
6463ex 416 . . . . . . . . . 10 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → ((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ))
6564ralrimiva 3149 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ))
66 suppfnss 7838 . . . . . . . . . 10 (((𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆) ∧ ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V)) → (∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 )))
6766imp 410 . . . . . . . . 9 ((((𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆) ∧ ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V)) ∧ ∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 )) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
6836, 40, 65, 67syl21anc 836 . . . . . . . 8 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
6968adantr 484 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
70 suppssfifsupp 8832 . . . . . . 7 (((𝐺 ∈ V ∧ Fun 𝐺0 ∈ V) ∧ ((𝐹 supp 0 ) ∈ Fin ∧ (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))) → 𝐺 finSupp 0 )
718, 10, 13, 15, 69, 70syl32anc 1375 . . . . . 6 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐺 finSupp 0 )
7271ex 416 . . . . 5 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐹 finSupp 0𝐺 finSupp 0 ))
7372ex 416 . . . 4 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹 finSupp 0𝐺 finSupp 0 )))
7473com23 86 . . 3 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → (𝐹 finSupp 0 → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝐺 finSupp 0 )))
75743impia 1114 . 2 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝐺 finSupp 0 ))
7675impcom 411 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cdif 3878  wss 3881  𝒫 cpw 4497  {csn 4525   class class class wbr 5030  cmpt 5110  Fun wfun 6318   Fn wfn 6319  cfv 6324  (class class class)co 7135   supp csupp 7813  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817  Basecbs 16475  .rcmulr 16558  Scalarcsca 16560  0gc0g 16705  invgcminusg 18096  Ringcrg 19290  Unitcui 19385  invrcinvr 19417  LModclmod 19627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-lmod 19629
This theorem is referenced by:  lincresunit3lem2  44889  lincresunit3  44890  isldepslvec2  44894
  Copyright terms: Public domain W3C validator