Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit2 Structured version   Visualization version   GIF version

Theorem lincresunit2 48323
Description: Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠
Allowed substitution hints:   𝑅(𝑠)   𝐺(𝑠)   𝑍(𝑠)

Proof of Theorem lincresunit2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difexg 5334 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
213ad2ant1 1132 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
32adantl 481 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝑆 ∖ {𝑋}) ∈ V)
43adantr 480 . . . . . . . 8 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝑆 ∖ {𝑋}) ∈ V)
5 lincresunit.g . . . . . . . . 9 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
6 mptexg 7240 . . . . . . . . 9 ((𝑆 ∖ {𝑋}) ∈ V → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))) ∈ V)
75, 6eqeltrid 2842 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∈ V → 𝐺 ∈ V)
84, 7syl 17 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐺 ∈ V)
95funmpt2 6606 . . . . . . . 8 Fun 𝐺
109a1i 11 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → Fun 𝐺)
11 lincresunit.0 . . . . . . . . 9 0 = (0g𝑅)
1211fvexi 6920 . . . . . . . 8 0 ∈ V
1312a1i 11 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 0 ∈ V)
14 simpr 484 . . . . . . . 8 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp 0 )
1514fsuppimpd 9406 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝐹 supp 0 ) ∈ Fin)
16 simplr 769 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
17 simpll 767 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
18 eldifi 4140 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝑆)
1918adantl 481 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑠𝑆)
20 lincresunit.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑀)
21 lincresunit.r . . . . . . . . . . . . . 14 𝑅 = (Scalar‘𝑀)
22 lincresunit.e . . . . . . . . . . . . . 14 𝐸 = (Base‘𝑅)
23 lincresunit.u . . . . . . . . . . . . . 14 𝑈 = (Unit‘𝑅)
24 lincresunit.z . . . . . . . . . . . . . 14 𝑍 = (0g𝑀)
25 lincresunit.n . . . . . . . . . . . . . 14 𝑁 = (invg𝑅)
26 lincresunit.i . . . . . . . . . . . . . 14 𝐼 = (invr𝑅)
27 lincresunit.t . . . . . . . . . . . . . 14 · = (.r𝑅)
2820, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem2 48321 . . . . . . . . . . . . 13 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑠𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
2916, 17, 19, 28syl21anc 838 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
3029ralrimiva 3143 . . . . . . . . . . 11 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ∀𝑠 ∈ (𝑆 ∖ {𝑋})((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
315fnmpt 6708 . . . . . . . . . . 11 (∀𝑠 ∈ (𝑆 ∖ {𝑋})((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸𝐺 Fn (𝑆 ∖ {𝑋}))
3230, 31syl 17 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝐺 Fn (𝑆 ∖ {𝑋}))
33 elmapfn 8903 . . . . . . . . . . . 12 (𝐹 ∈ (𝐸m 𝑆) → 𝐹 Fn 𝑆)
3433adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → 𝐹 Fn 𝑆)
3534adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝐹 Fn 𝑆)
3632, 35jca 511 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆))
37 difssd 4146 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝑆 ∖ {𝑋}) ⊆ 𝑆)
38 simpr1 1193 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝑆 ∈ 𝒫 𝐵)
3912a1i 11 . . . . . . . . . 10 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 0 ∈ V)
4037, 38, 393jca 1127 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V))
41 fveq2 6906 . . . . . . . . . . . . . 14 (𝑠 = 𝑥 → (𝐹𝑠) = (𝐹𝑥))
4241oveq2d 7446 . . . . . . . . . . . . 13 (𝑠 = 𝑥 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
43 simplr 769 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝑥 ∈ (𝑆 ∖ {𝑋}))
44 simpllr 776 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
45 simpll 767 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
4645adantr 480 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
47 eldifi 4140 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑆 ∖ {𝑋}) → 𝑥𝑆)
4847adantl 481 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → 𝑥𝑆)
4948adantr 480 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝑥𝑆)
5020, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem2 48321 . . . . . . . . . . . . . 14 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑥𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) ∈ 𝐸)
5144, 46, 49, 50syl21anc 838 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) ∈ 𝐸)
525, 42, 43, 51fvmptd3 7038 . . . . . . . . . . . 12 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐺𝑥) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
53 oveq2 7438 . . . . . . . . . . . . 13 ((𝐹𝑥) = 0 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ))
5421lmodring 20882 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
55543ad2ant2 1133 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
5655adantl 481 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝑅 ∈ Ring)
5720, 21, 22, 23, 11, 24, 25, 26, 27, 5lincresunitlem1 48320 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
5857ancoms 458 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
5922, 27, 11ringrz 20307 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6056, 58, 59syl2anc 584 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6160adantr 480 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6253, 61sylan9eqr 2796 . . . . . . . . . . . 12 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) = 0 )
6352, 62eqtrd 2774 . . . . . . . . . . 11 (((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐺𝑥) = 0 )
6463ex 412 . . . . . . . . . 10 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → ((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ))
6564ralrimiva 3143 . . . . . . . . 9 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ))
66 suppfnss 8212 . . . . . . . . . 10 (((𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆) ∧ ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V)) → (∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 )))
6766imp 406 . . . . . . . . 9 ((((𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆) ∧ ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V)) ∧ ∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 )) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
6836, 40, 65, 67syl21anc 838 . . . . . . . 8 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
6968adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
70 suppssfifsupp 9417 . . . . . . 7 (((𝐺 ∈ V ∧ Fun 𝐺0 ∈ V) ∧ ((𝐹 supp 0 ) ∈ Fin ∧ (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))) → 𝐺 finSupp 0 )
718, 10, 13, 15, 69, 70syl32anc 1377 . . . . . 6 ((((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐺 finSupp 0 )
7271ex 412 . . . . 5 (((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐹 finSupp 0𝐺 finSupp 0 ))
7372ex 412 . . . 4 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹 finSupp 0𝐺 finSupp 0 )))
7473com23 86 . . 3 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → (𝐹 finSupp 0 → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝐺 finSupp 0 )))
75743impia 1116 . 2 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝐺 finSupp 0 ))
7675impcom 407 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  cdif 3959  wss 3962  𝒫 cpw 4604  {csn 4630   class class class wbr 5147  cmpt 5230  Fun wfun 6556   Fn wfn 6557  cfv 6562  (class class class)co 7430   supp csupp 8183  m cmap 8864  Fincfn 8983   finSupp cfsupp 9398  Basecbs 17244  .rcmulr 17298  Scalarcsca 17300  0gc0g 17485  invgcminusg 18964  Ringcrg 20250  Unitcui 20371  invrcinvr 20403  LModclmod 20874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-lmod 20876
This theorem is referenced by:  lincresunit3lem2  48325  lincresunit3  48326  isldepslvec2  48330
  Copyright terms: Public domain W3C validator