MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odzdvds Structured version   Visualization version   GIF version

Theorem odzdvds 16192
Description: The only powers of 𝐴 that are congruent to 1 are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzdvds (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ ((od𝑁)‘𝐴) ∥ 𝐾))

Proof of Theorem odzdvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0re 11948 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
21adantl 485 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
3 odzcl 16190 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) ∈ ℕ)
43adantr 484 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℕ)
54nnrpd 12475 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℝ+)
6 modlt 13302 . . . . . . . 8 ((𝐾 ∈ ℝ ∧ ((od𝑁)‘𝐴) ∈ ℝ+) → (𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴))
72, 5, 6syl2anc 587 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴))
8 nn0z 12049 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
98adantl 485 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
109, 4zmodcld 13314 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0)
1110nn0red 12000 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℝ)
124nnred 11694 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℝ)
1311, 12ltnled 10830 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴) ↔ ¬ ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
147, 13mpbid 235 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ¬ ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
15 oveq2 7163 . . . . . . . . . . . 12 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → (𝐴𝑛) = (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))))
1615oveq1d 7170 . . . . . . . . . . 11 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → ((𝐴𝑛) − 1) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))
1716breq2d 5047 . . . . . . . . . 10 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → (𝑁 ∥ ((𝐴𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
1817elrab 3604 . . . . . . . . 9 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ↔ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
19 ssrab2 3986 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ ℕ
20 nnuz 12326 . . . . . . . . . . 11 ℕ = (ℤ‘1)
2119, 20sseqtri 3930 . . . . . . . . . 10 {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ (ℤ‘1)
22 infssuzle 12376 . . . . . . . . . 10 (({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ (ℤ‘1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
2321, 22mpan 689 . . . . . . . . 9 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
2418, 23sylbir 238 . . . . . . . 8 (((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
2524ancoms 462 . . . . . . 7 ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
26 odzval 16188 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
2726adantr 484 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
2827breq1d 5045 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴)) ↔ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
2925, 28syl5ibr 249 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) → ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
3014, 29mtod 201 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ¬ (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
31 imnan 403 . . . . 5 ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → ¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) ↔ ¬ (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
3230, 31sylibr 237 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → ¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
33 elnn0 11941 . . . . . 6 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0 ↔ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∨ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
3410, 33sylib 221 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∨ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
3534ord 861 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ → (𝐾 mod ((od𝑁)‘𝐴)) = 0))
3632, 35syld 47 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → (𝐾 mod ((od𝑁)‘𝐴)) = 0))
37 simpl1 1188 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℕ)
3837nnzd 12130 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ)
39 dvds0 15678 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
4038, 39syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ 0)
41 simpl2 1189 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℤ)
4241zcnd 12132 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℂ)
4342exp0d 13559 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑0) = 1)
4443oveq1d 7170 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑0) − 1) = (1 − 1))
45 1m1e0 11751 . . . . . 6 (1 − 1) = 0
4644, 45eqtrdi 2809 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑0) − 1) = 0)
4740, 46breqtrrd 5063 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ ((𝐴↑0) − 1))
48 oveq2 7163 . . . . . 6 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) = (𝐴↑0))
4948oveq1d 7170 . . . . 5 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) = ((𝐴↑0) − 1))
5049breq2d 5047 . . . 4 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ↔ 𝑁 ∥ ((𝐴↑0) − 1)))
5147, 50syl5ibrcom 250 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
5236, 51impbid 215 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
534nnnn0d 11999 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℕ0)
542, 4nndivred 11733 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 / ((od𝑁)‘𝐴)) ∈ ℝ)
55 nn0ge0 11964 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
5655adantl 485 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
574nngt0d 11728 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 < ((od𝑁)‘𝐴))
58 ge0div 11550 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ ((od𝑁)‘𝐴) ∈ ℝ ∧ 0 < ((od𝑁)‘𝐴)) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))))
592, 12, 57, 58syl3anc 1368 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))))
6056, 59mpbid 235 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 ≤ (𝐾 / ((od𝑁)‘𝐴)))
61 flge0nn0 13244 . . . . . . . . . 10 (((𝐾 / ((od𝑁)‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0)
6254, 60, 61syl2anc 587 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0)
6353, 62nn0mulcld 12004 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℕ0)
64 zexpcl 13499 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℤ)
6541, 63, 64syl2anc 587 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℤ)
6665zred 12131 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℝ)
67 1red 10685 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℝ)
68 zexpcl 13499 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ)
6941, 10, 68syl2anc 587 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ)
7037nnrpd 12475 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ+)
7142, 62, 53expmuld 13568 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) = ((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))))
7271oveq1d 7170 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
73 zexpcl 13499 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((od𝑁)‘𝐴) ∈ ℕ0) → (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ)
7441, 53, 73syl2anc 587 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ)
75 1zzd 12057 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℤ)
76 odzid 16191 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1))
7776adantr 484 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1))
78 moddvds 15671 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
7937, 74, 75, 78syl3anc 1368 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
8077, 79mpbird 260 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁))
81 modexp 13654 . . . . . . . 8 ((((𝐴↑((od𝑁)‘𝐴)) ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0𝑁 ∈ ℝ+) ∧ ((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁)) → (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
8274, 75, 62, 70, 80, 81syl221anc 1378 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
8354flcld 13222 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℤ)
84 1exp 13513 . . . . . . . . 9 ((⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℤ → (1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) = 1)
8583, 84syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) = 1)
8685oveq1d 7170 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = (1 mod 𝑁))
8772, 82, 863eqtrd 2797 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (1 mod 𝑁))
88 modmul1 13346 . . . . . 6 ((((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ ∧ 𝑁 ∈ ℝ+) ∧ ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (1 mod 𝑁)) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁))
8966, 67, 69, 70, 87, 88syl221anc 1378 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁))
9042, 10, 63expaddd 13567 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴)))) = ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))))
91 modval 13293 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ ((od𝑁)‘𝐴) ∈ ℝ+) → (𝐾 mod ((od𝑁)‘𝐴)) = (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))))
922, 5, 91syl2anc 587 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) = (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))))
9392oveq2d 7171 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴))) = ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))))))
9463nn0cnd 12001 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℂ)
952recnd 10712 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℂ)
9694, 95pncan3d 11043 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))))) = 𝐾)
9793, 96eqtrd 2793 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴))) = 𝐾)
9897oveq2d 7171 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴𝐾))
9990, 98eqtr3d 2795 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴𝐾))
10099oveq1d 7170 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((𝐴𝐾) mod 𝑁))
10169zcnd 12132 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℂ)
102101mulid2d 10702 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))))
103102oveq1d 7170 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁))
10489, 100, 1033eqtr3d 2801 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) mod 𝑁) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁))
105104eqeq1d 2760 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁)))
106 zexpcl 13499 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
10741, 106sylancom 591 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
108 moddvds 15671 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝐾) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴𝐾) − 1)))
10937, 107, 75, 108syl3anc 1368 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴𝐾) − 1)))
110 moddvds 15671 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
11137, 69, 75, 110syl3anc 1368 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
112105, 109, 1113bitr3d 312 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
113 dvdsval3 15664 . . 3 ((((od𝑁)‘𝐴) ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((od𝑁)‘𝐴) ∥ 𝐾 ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
1144, 9, 113syl2anc 587 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) ∥ 𝐾 ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
11552, 112, 1143bitr4d 314 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ ((od𝑁)‘𝐴) ∥ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  {crab 3074  wss 3860   class class class wbr 5035  cfv 6339  (class class class)co 7155  infcinf 8943  cr 10579  0cc0 10580  1c1 10581   + caddc 10583   · cmul 10585   < clt 10718  cle 10719  cmin 10913   / cdiv 11340  cn 11679  0cn0 11939  cz 12025  cuz 12287  +crp 12435  cfl 13214   mod cmo 13291  cexp 13484  cdvds 15660   gcd cgcd 15898  odcodz 16160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-oadd 8121  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-xnn0 12012  df-z 12026  df-uz 12288  df-rp 12436  df-fz 12945  df-fzo 13088  df-fl 13216  df-mod 13292  df-seq 13424  df-exp 13485  df-hash 13746  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-dvds 15661  df-gcd 15899  df-odz 16162  df-phi 16163
This theorem is referenced by:  odzphi  16193  pockthlem  16301  odz2prm2pw  44476  fmtnoprmfac2  44480
  Copyright terms: Public domain W3C validator