MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odzdvds Structured version   Visualization version   GIF version

Theorem odzdvds 16496
Description: The only powers of 𝐴 that are congruent to 1 are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzdvds (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ ((od𝑁)‘𝐴) ∥ 𝐾))

Proof of Theorem odzdvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0re 12242 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
21adantl 482 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
3 odzcl 16494 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) ∈ ℕ)
43adantr 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℕ)
54nnrpd 12770 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℝ+)
6 modlt 13600 . . . . . . . 8 ((𝐾 ∈ ℝ ∧ ((od𝑁)‘𝐴) ∈ ℝ+) → (𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴))
72, 5, 6syl2anc 584 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴))
8 nn0z 12343 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
98adantl 482 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
109, 4zmodcld 13612 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0)
1110nn0red 12294 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℝ)
124nnred 11988 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℝ)
1311, 12ltnled 11122 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴) ↔ ¬ ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
147, 13mpbid 231 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ¬ ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
15 oveq2 7283 . . . . . . . . . . . 12 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → (𝐴𝑛) = (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))))
1615oveq1d 7290 . . . . . . . . . . 11 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → ((𝐴𝑛) − 1) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))
1716breq2d 5086 . . . . . . . . . 10 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → (𝑁 ∥ ((𝐴𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
1817elrab 3624 . . . . . . . . 9 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ↔ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
19 ssrab2 4013 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ ℕ
20 nnuz 12621 . . . . . . . . . . 11 ℕ = (ℤ‘1)
2119, 20sseqtri 3957 . . . . . . . . . 10 {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ (ℤ‘1)
22 infssuzle 12671 . . . . . . . . . 10 (({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ (ℤ‘1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
2321, 22mpan 687 . . . . . . . . 9 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
2418, 23sylbir 234 . . . . . . . 8 (((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
2524ancoms 459 . . . . . . 7 ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
26 odzval 16492 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
2726adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
2827breq1d 5084 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴)) ↔ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
2925, 28syl5ibr 245 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) → ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
3014, 29mtod 197 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ¬ (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
31 imnan 400 . . . . 5 ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → ¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) ↔ ¬ (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
3230, 31sylibr 233 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → ¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
33 elnn0 12235 . . . . . 6 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0 ↔ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∨ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
3410, 33sylib 217 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∨ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
3534ord 861 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ → (𝐾 mod ((od𝑁)‘𝐴)) = 0))
3632, 35syld 47 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → (𝐾 mod ((od𝑁)‘𝐴)) = 0))
37 simpl1 1190 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℕ)
3837nnzd 12425 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ)
39 dvds0 15981 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
4038, 39syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ 0)
41 simpl2 1191 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℤ)
4241zcnd 12427 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℂ)
4342exp0d 13858 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑0) = 1)
4443oveq1d 7290 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑0) − 1) = (1 − 1))
45 1m1e0 12045 . . . . . 6 (1 − 1) = 0
4644, 45eqtrdi 2794 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑0) − 1) = 0)
4740, 46breqtrrd 5102 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ ((𝐴↑0) − 1))
48 oveq2 7283 . . . . . 6 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) = (𝐴↑0))
4948oveq1d 7290 . . . . 5 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) = ((𝐴↑0) − 1))
5049breq2d 5086 . . . 4 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ↔ 𝑁 ∥ ((𝐴↑0) − 1)))
5147, 50syl5ibrcom 246 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
5236, 51impbid 211 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
534nnnn0d 12293 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℕ0)
542, 4nndivred 12027 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 / ((od𝑁)‘𝐴)) ∈ ℝ)
55 nn0ge0 12258 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
5655adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
574nngt0d 12022 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 < ((od𝑁)‘𝐴))
58 ge0div 11842 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ ((od𝑁)‘𝐴) ∈ ℝ ∧ 0 < ((od𝑁)‘𝐴)) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))))
592, 12, 57, 58syl3anc 1370 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))))
6056, 59mpbid 231 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 ≤ (𝐾 / ((od𝑁)‘𝐴)))
61 flge0nn0 13540 . . . . . . . . . 10 (((𝐾 / ((od𝑁)‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0)
6254, 60, 61syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0)
6353, 62nn0mulcld 12298 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℕ0)
64 zexpcl 13797 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℤ)
6541, 63, 64syl2anc 584 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℤ)
6665zred 12426 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℝ)
67 1red 10976 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℝ)
68 zexpcl 13797 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ)
6941, 10, 68syl2anc 584 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ)
7037nnrpd 12770 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ+)
7142, 62, 53expmuld 13867 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) = ((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))))
7271oveq1d 7290 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
73 zexpcl 13797 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((od𝑁)‘𝐴) ∈ ℕ0) → (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ)
7441, 53, 73syl2anc 584 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ)
75 1zzd 12351 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℤ)
76 odzid 16495 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1))
7776adantr 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1))
78 moddvds 15974 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
7937, 74, 75, 78syl3anc 1370 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
8077, 79mpbird 256 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁))
81 modexp 13953 . . . . . . . 8 ((((𝐴↑((od𝑁)‘𝐴)) ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0𝑁 ∈ ℝ+) ∧ ((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁)) → (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
8274, 75, 62, 70, 80, 81syl221anc 1380 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
8354flcld 13518 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℤ)
84 1exp 13812 . . . . . . . . 9 ((⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℤ → (1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) = 1)
8583, 84syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) = 1)
8685oveq1d 7290 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = (1 mod 𝑁))
8772, 82, 863eqtrd 2782 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (1 mod 𝑁))
88 modmul1 13644 . . . . . 6 ((((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ ∧ 𝑁 ∈ ℝ+) ∧ ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (1 mod 𝑁)) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁))
8966, 67, 69, 70, 87, 88syl221anc 1380 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁))
9042, 10, 63expaddd 13866 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴)))) = ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))))
91 modval 13591 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ ((od𝑁)‘𝐴) ∈ ℝ+) → (𝐾 mod ((od𝑁)‘𝐴)) = (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))))
922, 5, 91syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) = (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))))
9392oveq2d 7291 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴))) = ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))))))
9463nn0cnd 12295 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℂ)
952recnd 11003 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℂ)
9694, 95pncan3d 11335 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))))) = 𝐾)
9793, 96eqtrd 2778 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴))) = 𝐾)
9897oveq2d 7291 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴𝐾))
9990, 98eqtr3d 2780 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴𝐾))
10099oveq1d 7290 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((𝐴𝐾) mod 𝑁))
10169zcnd 12427 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℂ)
102101mulid2d 10993 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))))
103102oveq1d 7290 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁))
10489, 100, 1033eqtr3d 2786 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) mod 𝑁) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁))
105104eqeq1d 2740 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁)))
106 zexpcl 13797 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
10741, 106sylancom 588 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
108 moddvds 15974 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝐾) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴𝐾) − 1)))
10937, 107, 75, 108syl3anc 1370 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴𝐾) − 1)))
110 moddvds 15974 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
11137, 69, 75, 110syl3anc 1370 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
112105, 109, 1113bitr3d 309 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
113 dvdsval3 15967 . . 3 ((((od𝑁)‘𝐴) ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((od𝑁)‘𝐴) ∥ 𝐾 ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
1144, 9, 113syl2anc 584 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) ∥ 𝐾 ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
11552, 112, 1143bitr4d 311 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ ((od𝑁)‘𝐴) ∥ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cuz 12582  +crp 12730  cfl 13510   mod cmo 13589  cexp 13782  cdvds 15963   gcd cgcd 16201  odcodz 16464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-odz 16466  df-phi 16467
This theorem is referenced by:  odzphi  16497  pockthlem  16606  aks4d1p9  40096  odz2prm2pw  45015  fmtnoprmfac2  45019
  Copyright terms: Public domain W3C validator