MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsvalmod Structured version   Visualization version   GIF version

Theorem lgsvalmod 27375
Description: The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, see also lgsqr 27410. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsvalmod ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))

Proof of Theorem lgsvalmod
StepHypRef Expression
1 eldifi 4141 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
21adantl 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ)
3 prmz 16709 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42, 3syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℤ)
5 lgscl 27370 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ)
64, 5syldan 591 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℤ)
76zred 12720 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℝ)
8 peano2re 11432 . . . 4 ((𝐴 /L 𝑃) ∈ ℝ → ((𝐴 /L 𝑃) + 1) ∈ ℝ)
97, 8syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℝ)
10 oddprm 16844 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
1110adantl 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ)
1211nnnn0d 12585 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ0)
13 zexpcl 14114 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
1412, 13syldan 591 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
1514zred 12720 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ)
16 peano2re 11432 . . . 4 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℝ → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ)
1715, 16syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ)
18 neg1rr 12379 . . . 4 -1 ∈ ℝ
1918a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → -1 ∈ ℝ)
20 prmnn 16708 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
212, 20syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
2221nnrpd 13073 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℝ+)
23 lgsval3 27374 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
2423eqcomd 2741 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (𝐴 /L 𝑃))
2517, 22modcld 13912 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℝ)
2625recnd 11287 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℂ)
27 ax-1cn 11211 . . . . . . . 8 1 ∈ ℂ
2827a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℂ)
297recnd 11287 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℂ)
3026, 28, 29subadd2d 11637 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (𝐴 /L 𝑃) ↔ ((𝐴 /L 𝑃) + 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
3124, 30mpbid 232 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3231oveq1d 7446 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃))
33 modabs2 13942 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3417, 22, 33syl2anc 584 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3532, 34eqtrd 2775 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
36 modadd1 13945 . . 3 (((((𝐴 /L 𝑃) + 1) ∈ ℝ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ) ∧ (-1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (((𝐴 /L 𝑃) + 1) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃)) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃))
379, 17, 19, 22, 35, 36syl221anc 1380 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃))
389recnd 11287 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℂ)
39 negsub 11555 . . . . 5 ((((𝐴 /L 𝑃) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 /L 𝑃) + 1) + -1) = (((𝐴 /L 𝑃) + 1) − 1))
4038, 27, 39sylancl 586 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) + -1) = (((𝐴 /L 𝑃) + 1) − 1))
41 pncan 11512 . . . . 5 (((𝐴 /L 𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 /L 𝑃) + 1) − 1) = (𝐴 /L 𝑃))
4229, 27, 41sylancl 586 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) − 1) = (𝐴 /L 𝑃))
4340, 42eqtrd 2775 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) + -1) = (𝐴 /L 𝑃))
4443oveq1d 7446 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((𝐴 /L 𝑃) mod 𝑃))
4517recnd 11287 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℂ)
46 negsub 11555 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1))
4745, 27, 46sylancl 586 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1))
4815recnd 11287 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
49 pncan 11512 . . . . 5 (((𝐴↑((𝑃 − 1) / 2)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1) = (𝐴↑((𝑃 − 1) / 2)))
5048, 27, 49sylancl 586 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1) = (𝐴↑((𝑃 − 1) / 2)))
5147, 50eqtrd 2775 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (𝐴↑((𝑃 − 1) / 2)))
5251oveq1d 7446 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
5337, 44, 523eqtr3d 2783 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cdif 3960  {csn 4631  (class class class)co 7431  cc 11151  cr 11152  1c1 11154   + caddc 11156  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  +crp 13032   mod cmo 13906  cexp 14099  cprime 16705   /L clgs 27353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800  df-pc 16871  df-lgs 27354
This theorem is referenced by:  lgsdirprm  27390  lgsne0  27394  lgsqrlem3  27407  gausslemma2d  27433  fmtnoprmfac2lem1  47491
  Copyright terms: Public domain W3C validator