MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsvalmod Structured version   Visualization version   GIF version

Theorem lgsvalmod 27378
Description: The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, see also lgsqr 27413. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsvalmod ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))

Proof of Theorem lgsvalmod
StepHypRef Expression
1 eldifi 4154 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
21adantl 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ)
3 prmz 16722 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42, 3syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℤ)
5 lgscl 27373 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ)
64, 5syldan 590 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℤ)
76zred 12747 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℝ)
8 peano2re 11463 . . . 4 ((𝐴 /L 𝑃) ∈ ℝ → ((𝐴 /L 𝑃) + 1) ∈ ℝ)
97, 8syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℝ)
10 oddprm 16857 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
1110adantl 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ)
1211nnnn0d 12613 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ0)
13 zexpcl 14127 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
1412, 13syldan 590 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
1514zred 12747 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ)
16 peano2re 11463 . . . 4 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℝ → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ)
1715, 16syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ)
18 neg1rr 12408 . . . 4 -1 ∈ ℝ
1918a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → -1 ∈ ℝ)
20 prmnn 16721 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
212, 20syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
2221nnrpd 13097 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℝ+)
23 lgsval3 27377 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
2423eqcomd 2746 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (𝐴 /L 𝑃))
2517, 22modcld 13926 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℝ)
2625recnd 11318 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℂ)
27 ax-1cn 11242 . . . . . . . 8 1 ∈ ℂ
2827a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℂ)
297recnd 11318 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℂ)
3026, 28, 29subadd2d 11666 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (𝐴 /L 𝑃) ↔ ((𝐴 /L 𝑃) + 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
3124, 30mpbid 232 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3231oveq1d 7463 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃))
33 modabs2 13956 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3417, 22, 33syl2anc 583 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3532, 34eqtrd 2780 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
36 modadd1 13959 . . 3 (((((𝐴 /L 𝑃) + 1) ∈ ℝ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ) ∧ (-1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (((𝐴 /L 𝑃) + 1) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃)) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃))
379, 17, 19, 22, 35, 36syl221anc 1381 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃))
389recnd 11318 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℂ)
39 negsub 11584 . . . . 5 ((((𝐴 /L 𝑃) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 /L 𝑃) + 1) + -1) = (((𝐴 /L 𝑃) + 1) − 1))
4038, 27, 39sylancl 585 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) + -1) = (((𝐴 /L 𝑃) + 1) − 1))
41 pncan 11542 . . . . 5 (((𝐴 /L 𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 /L 𝑃) + 1) − 1) = (𝐴 /L 𝑃))
4229, 27, 41sylancl 585 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) − 1) = (𝐴 /L 𝑃))
4340, 42eqtrd 2780 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) + -1) = (𝐴 /L 𝑃))
4443oveq1d 7463 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((𝐴 /L 𝑃) mod 𝑃))
4517recnd 11318 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℂ)
46 negsub 11584 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1))
4745, 27, 46sylancl 585 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1))
4815recnd 11318 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
49 pncan 11542 . . . . 5 (((𝐴↑((𝑃 − 1) / 2)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1) = (𝐴↑((𝑃 − 1) / 2)))
5048, 27, 49sylancl 585 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1) = (𝐴↑((𝑃 − 1) / 2)))
5147, 50eqtrd 2780 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (𝐴↑((𝑃 − 1) / 2)))
5251oveq1d 7463 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
5337, 44, 523eqtr3d 2788 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cdif 3973  {csn 4648  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  +crp 13057   mod cmo 13920  cexp 14112  cprime 16718   /L clgs 27356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-phi 16813  df-pc 16884  df-lgs 27357
This theorem is referenced by:  lgsdirprm  27393  lgsne0  27397  lgsqrlem3  27410  gausslemma2d  27436  fmtnoprmfac2lem1  47440
  Copyright terms: Public domain W3C validator