MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsvalmod Structured version   Visualization version   GIF version

Theorem lgsvalmod 25562
Description: The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, see also lgsqr 25597. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsvalmod ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))

Proof of Theorem lgsvalmod
StepHypRef Expression
1 eldifi 4019 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
21adantl 482 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ)
3 prmz 15836 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42, 3syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℤ)
5 lgscl 25557 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ)
64, 5syldan 591 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℤ)
76zred 11925 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℝ)
8 peano2re 10649 . . . 4 ((𝐴 /L 𝑃) ∈ ℝ → ((𝐴 /L 𝑃) + 1) ∈ ℝ)
97, 8syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℝ)
10 oddprm 15964 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
1110adantl 482 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ)
1211nnnn0d 11792 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ0)
13 zexpcl 13282 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
1412, 13syldan 591 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
1514zred 11925 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ)
16 peano2re 10649 . . . 4 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℝ → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ)
1715, 16syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ)
18 neg1rr 11589 . . . 4 -1 ∈ ℝ
1918a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → -1 ∈ ℝ)
20 prmnn 15835 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
212, 20syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
2221nnrpd 12268 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℝ+)
23 lgsval3 25561 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
2423eqcomd 2799 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (𝐴 /L 𝑃))
2517, 22modcld 13081 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℝ)
2625recnd 10504 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℂ)
27 ax-1cn 10430 . . . . . . . 8 1 ∈ ℂ
2827a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℂ)
297recnd 10504 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) ∈ ℂ)
3026, 28, 29subadd2d 10853 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (𝐴 /L 𝑃) ↔ ((𝐴 /L 𝑃) + 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
3124, 30mpbid 233 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3231oveq1d 7022 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃))
33 modabs2 13111 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3417, 22, 33syl2anc 584 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
3532, 34eqtrd 2829 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
36 modadd1 13114 . . 3 (((((𝐴 /L 𝑃) + 1) ∈ ℝ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℝ) ∧ (-1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (((𝐴 /L 𝑃) + 1) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃)) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃))
379, 17, 19, 22, 35, 36syl221anc 1372 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃))
389recnd 10504 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) + 1) ∈ ℂ)
39 negsub 10771 . . . . 5 ((((𝐴 /L 𝑃) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 /L 𝑃) + 1) + -1) = (((𝐴 /L 𝑃) + 1) − 1))
4038, 27, 39sylancl 586 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) + -1) = (((𝐴 /L 𝑃) + 1) − 1))
41 pncan 10728 . . . . 5 (((𝐴 /L 𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 /L 𝑃) + 1) − 1) = (𝐴 /L 𝑃))
4229, 27, 41sylancl 586 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) − 1) = (𝐴 /L 𝑃))
4340, 42eqtrd 2829 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 /L 𝑃) + 1) + -1) = (𝐴 /L 𝑃))
4443oveq1d 7022 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴 /L 𝑃) + 1) + -1) mod 𝑃) = ((𝐴 /L 𝑃) mod 𝑃))
4517recnd 10504 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℂ)
46 negsub 10771 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1))
4745, 27, 46sylancl 586 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1))
4815recnd 10504 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
49 pncan 10728 . . . . 5 (((𝐴↑((𝑃 − 1) / 2)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1) = (𝐴↑((𝑃 − 1) / 2)))
5048, 27, 49sylancl 586 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 1) = (𝐴↑((𝑃 − 1) / 2)))
5147, 50eqtrd 2829 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) = (𝐴↑((𝑃 − 1) / 2)))
5251oveq1d 7022 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) + -1) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
5337, 44, 523eqtr3d 2837 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wcel 2079  cdif 3851  {csn 4466  (class class class)co 7007  cc 10370  cr 10371  1c1 10373   + caddc 10375  cmin 10706  -cneg 10707   / cdiv 11134  cn 11475  2c2 11529  0cn0 11734  cz 11818  +crp 12228   mod cmo 13075  cexp 13267  cprime 15832   /L clgs 25540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-map 8249  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-sup 8742  df-inf 8743  df-dju 9165  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-n0 11735  df-xnn0 11805  df-z 11819  df-uz 12083  df-q 12187  df-rp 12229  df-fz 12732  df-fzo 12873  df-fl 13000  df-mod 13076  df-seq 13208  df-exp 13268  df-hash 13529  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-dvds 15429  df-gcd 15665  df-prm 15833  df-phi 15920  df-pc 15991  df-lgs 25541
This theorem is referenced by:  lgsdirprm  25577  lgsne0  25581  lgsqrlem3  25594  gausslemma2d  25620  fmtnoprmfac2lem1  43164
  Copyright terms: Public domain W3C validator