MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem9 Structured version   Visualization version   GIF version

Theorem ax5seglem9 28864
Description: Lemma for ax5seg 28865. Take the calculation in ax5seglem8 28863 and turn it into a series of measurements. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
ax5seglem9 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝑁,𝑗   𝑇,𝑖,𝑗

Proof of Theorem ax5seglem9
StepHypRef Expression
1 simprll 778 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐴 ∈ (𝔼‘𝑁))
21ad2antrr 726 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
3 fveecn 28829 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
42, 3sylancom 588 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
5 elicc01 13427 . . . . . . . 8 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
65simp1bi 1145 . . . . . . 7 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
76recnd 11202 . . . . . 6 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
87ad2antrl 728 . . . . 5 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝑇 ∈ ℂ)
98adantr 480 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝑇 ∈ ℂ)
10 simprrl 780 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐶 ∈ (𝔼‘𝑁))
1110ad2antrr 726 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
12 fveecn 28829 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
1311, 12sylancom 588 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
14 simprrr 781 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐷 ∈ (𝔼‘𝑁))
1514ad2antrr 726 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
16 fveecn 28829 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐷𝑗) ∈ ℂ)
1715, 16sylancom 588 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐷𝑗) ∈ ℂ)
18 fveq2 6858 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
19 fveq2 6858 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
2019oveq2d 7403 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 − 𝑇) · (𝐴𝑖)) = ((1 − 𝑇) · (𝐴𝑗)))
21 fveq2 6858 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
2221oveq2d 7403 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑇 · (𝐶𝑖)) = (𝑇 · (𝐶𝑗)))
2320, 22oveq12d 7405 . . . . . . . 8 (𝑖 = 𝑗 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2418, 23eqeq12d 2745 . . . . . . 7 (𝑖 = 𝑗 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
2524rspccva 3587 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2625adantll 714 . . . . 5 (((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2726adantll 714 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
28 ax5seglem8 28863 . . . . . 6 ((((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ ((𝐶𝑗) ∈ ℂ ∧ (𝐷𝑗) ∈ ℂ)) → (𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)) = ((((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
29 oveq1 7394 . . . . . . . . 9 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((𝐵𝑗) − (𝐷𝑗)) = ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐷𝑗)))
3029oveq1d 7402 . . . . . . . 8 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → (((𝐵𝑗) − (𝐷𝑗))↑2) = (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐷𝑗))↑2))
3130oveq1d 7402 . . . . . . 7 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))) = ((((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
3231eqcomd 2735 . . . . . 6 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))) = ((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
3328, 32sylan9eq 2784 . . . . 5 (((((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ ((𝐶𝑗) ∈ ℂ ∧ (𝐷𝑗) ∈ ℂ)) ∧ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) → (𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)) = ((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
34333impa 1109 . . . 4 ((((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ ((𝐶𝑗) ∈ ℂ ∧ (𝐷𝑗) ∈ ℂ) ∧ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) → (𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)) = ((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
354, 9, 13, 17, 27, 34syl221anc 1383 . . 3 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)) = ((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
3635sumeq2dv 15668 . 2 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
37 fzfid 13938 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (1...𝑁) ∈ Fin)
3813, 17subcld 11533 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐶𝑗) − (𝐷𝑗)) ∈ ℂ)
3938sqcld 14109 . . 3 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐶𝑗) − (𝐷𝑗))↑2) ∈ ℂ)
4037, 8, 39fsummulc2 15750 . 2 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)(𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)))
414, 13subcld 11533 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
4241sqcld 14109 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
4337, 8, 42fsummulc2 15750 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)(𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)))
4443oveq1d 7402 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))
459, 42mulcld 11194 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) ∈ ℂ)
464, 17subcld 11533 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴𝑗) − (𝐷𝑗)) ∈ ℂ)
4746sqcld 14109 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐷𝑗))↑2) ∈ ℂ)
4837, 45, 47fsumsub 15754 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))
4944, 48eqtr4d 2767 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))
5049oveq2d 7403 . . . . 5 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2))) = ((1 − 𝑇) · Σ𝑗 ∈ (1...𝑁)((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2))))
51 ax-1cn 11126 . . . . . . 7 1 ∈ ℂ
52 subcl 11420 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
5351, 8, 52sylancr 587 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (1 − 𝑇) ∈ ℂ)
5445, 47subcld 11533 . . . . . 6 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)) ∈ ℂ)
5537, 53, 54fsummulc2 15750 . . . . 5 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((1 − 𝑇) · Σ𝑗 ∈ (1...𝑁)((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2))) = Σ𝑗 ∈ (1...𝑁)((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2))))
5650, 55eqtrd 2764 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2))) = Σ𝑗 ∈ (1...𝑁)((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2))))
5756oveq2d 7403 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + Σ𝑗 ∈ (1...𝑁)((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
58 simprlr 779 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐵 ∈ (𝔼‘𝑁))
5958ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
60 fveecn 28829 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
6159, 60sylancom 588 . . . . . 6 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
6261, 17subcld 11533 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐵𝑗) − (𝐷𝑗)) ∈ ℂ)
6362sqcld 14109 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐵𝑗) − (𝐷𝑗))↑2) ∈ ℂ)
6451, 9, 52sylancr 587 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (1 − 𝑇) ∈ ℂ)
6564, 54mulcld 11194 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2))) ∈ ℂ)
6637, 63, 65fsumadd 15706 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + Σ𝑗 ∈ (1...𝑁)((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
6757, 66eqtr4d 2767 . 2 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))) = Σ𝑗 ∈ (1...𝑁)((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
6836, 40, 673eqtr4d 2774 1 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  cmin 11405  cn 12186  2c2 12241  [,]cicc 13309  ...cfz 13468  cexp 14026  Σcsu 15652  𝔼cee 28815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-ee 28818
This theorem is referenced by:  ax5seg  28865
  Copyright terms: Public domain W3C validator