MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem9 Structured version   Visualization version   GIF version

Theorem ax5seglem9 28916
Description: Lemma for ax5seg 28917. Take the calculation in ax5seglem8 28915 and turn it into a series of measurements. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
ax5seglem9 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝑁,𝑗   𝑇,𝑖,𝑗

Proof of Theorem ax5seglem9
StepHypRef Expression
1 simprll 778 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐴 ∈ (𝔼‘𝑁))
21ad2antrr 726 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
3 fveecn 28881 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
42, 3sylancom 588 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
5 elicc01 13483 . . . . . . . 8 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
65simp1bi 1145 . . . . . . 7 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
76recnd 11263 . . . . . 6 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
87ad2antrl 728 . . . . 5 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝑇 ∈ ℂ)
98adantr 480 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝑇 ∈ ℂ)
10 simprrl 780 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐶 ∈ (𝔼‘𝑁))
1110ad2antrr 726 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
12 fveecn 28881 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
1311, 12sylancom 588 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
14 simprrr 781 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐷 ∈ (𝔼‘𝑁))
1514ad2antrr 726 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
16 fveecn 28881 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐷𝑗) ∈ ℂ)
1715, 16sylancom 588 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐷𝑗) ∈ ℂ)
18 fveq2 6876 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
19 fveq2 6876 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
2019oveq2d 7421 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 − 𝑇) · (𝐴𝑖)) = ((1 − 𝑇) · (𝐴𝑗)))
21 fveq2 6876 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
2221oveq2d 7421 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑇 · (𝐶𝑖)) = (𝑇 · (𝐶𝑗)))
2320, 22oveq12d 7423 . . . . . . . 8 (𝑖 = 𝑗 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2418, 23eqeq12d 2751 . . . . . . 7 (𝑖 = 𝑗 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
2524rspccva 3600 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2625adantll 714 . . . . 5 (((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2726adantll 714 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
28 ax5seglem8 28915 . . . . . 6 ((((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ ((𝐶𝑗) ∈ ℂ ∧ (𝐷𝑗) ∈ ℂ)) → (𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)) = ((((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
29 oveq1 7412 . . . . . . . . 9 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((𝐵𝑗) − (𝐷𝑗)) = ((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐷𝑗)))
3029oveq1d 7420 . . . . . . . 8 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → (((𝐵𝑗) − (𝐷𝑗))↑2) = (((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐷𝑗))↑2))
3130oveq1d 7420 . . . . . . 7 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))) = ((((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
3231eqcomd 2741 . . . . . 6 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((((((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))) = ((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
3328, 32sylan9eq 2790 . . . . 5 (((((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ ((𝐶𝑗) ∈ ℂ ∧ (𝐷𝑗) ∈ ℂ)) ∧ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) → (𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)) = ((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
34333impa 1109 . . . 4 ((((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ ((𝐶𝑗) ∈ ℂ ∧ (𝐷𝑗) ∈ ℂ) ∧ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) → (𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)) = ((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
354, 9, 13, 17, 27, 34syl221anc 1383 . . 3 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)) = ((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
3635sumeq2dv 15718 . 2 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
37 fzfid 13991 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (1...𝑁) ∈ Fin)
3813, 17subcld 11594 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐶𝑗) − (𝐷𝑗)) ∈ ℂ)
3938sqcld 14162 . . 3 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐶𝑗) − (𝐷𝑗))↑2) ∈ ℂ)
4037, 8, 39fsummulc2 15800 . 2 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)(𝑇 · (((𝐶𝑗) − (𝐷𝑗))↑2)))
414, 13subcld 11594 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
4241sqcld 14162 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
4337, 8, 42fsummulc2 15800 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)(𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)))
4443oveq1d 7420 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))
459, 42mulcld 11255 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) ∈ ℂ)
464, 17subcld 11594 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴𝑗) − (𝐷𝑗)) ∈ ℂ)
4746sqcld 14162 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐷𝑗))↑2) ∈ ℂ)
4837, 45, 47fsumsub 15804 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))
4944, 48eqtr4d 2773 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))
5049oveq2d 7421 . . . . 5 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2))) = ((1 − 𝑇) · Σ𝑗 ∈ (1...𝑁)((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2))))
51 ax-1cn 11187 . . . . . . 7 1 ∈ ℂ
52 subcl 11481 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
5351, 8, 52sylancr 587 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (1 − 𝑇) ∈ ℂ)
5445, 47subcld 11594 . . . . . 6 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)) ∈ ℂ)
5537, 53, 54fsummulc2 15800 . . . . 5 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((1 − 𝑇) · Σ𝑗 ∈ (1...𝑁)((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2))) = Σ𝑗 ∈ (1...𝑁)((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2))))
5650, 55eqtrd 2770 . . . 4 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2))) = Σ𝑗 ∈ (1...𝑁)((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2))))
5756oveq2d 7421 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + Σ𝑗 ∈ (1...𝑁)((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
58 simprlr 779 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐵 ∈ (𝔼‘𝑁))
5958ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
60 fveecn 28881 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
6159, 60sylancom 588 . . . . . 6 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
6261, 17subcld 11594 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐵𝑗) − (𝐷𝑗)) ∈ ℂ)
6362sqcld 14162 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐵𝑗) − (𝐷𝑗))↑2) ∈ ℂ)
6451, 9, 52sylancr 587 . . . . 5 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (1 − 𝑇) ∈ ℂ)
6564, 54mulcld 11255 . . . 4 ((((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2))) ∈ ℂ)
6637, 63, 65fsumadd 15756 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + Σ𝑗 ∈ (1...𝑁)((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
6757, 66eqtr4d 2773 . 2 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))) = Σ𝑗 ∈ (1...𝑁)((((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · (((𝐴𝑗) − (𝐶𝑗))↑2)) − (((𝐴𝑗) − (𝐷𝑗))↑2)))))
6836, 40, 673eqtr4d 2780 1 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cle 11270  cmin 11466  cn 12240  2c2 12295  [,]cicc 13365  ...cfz 13524  cexp 14079  Σcsu 15702  𝔼cee 28867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-ee 28870
This theorem is referenced by:  ax5seg  28917
  Copyright terms: Public domain W3C validator