![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpexpmord | Structured version Visualization version GIF version |
Description: Mantissa ordering relationship for exponentiation of positive reals. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
rpexpmord | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6911 | . . 3 ⊢ (𝑎 = 𝑏 → (𝑎↑𝑁) = (𝑏↑𝑁)) | |
2 | oveq1 6911 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎↑𝑁) = (𝐴↑𝑁)) | |
3 | oveq1 6911 | . . 3 ⊢ (𝑎 = 𝐵 → (𝑎↑𝑁) = (𝐵↑𝑁)) | |
4 | rpssre 12118 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
5 | rpre 12119 | . . . 4 ⊢ (𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ) | |
6 | nnnn0 11625 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
7 | reexpcl 13170 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑎↑𝑁) ∈ ℝ) | |
8 | 5, 6, 7 | syl2anr 592 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ ℝ+) → (𝑎↑𝑁) ∈ ℝ) |
9 | simplrl 797 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ+) | |
10 | 9 | rpred 12155 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ) |
11 | simplrr 798 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ+) | |
12 | 11 | rpred 12155 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ) |
13 | 9 | rpge0d 12159 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎) |
14 | simpr 479 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏) | |
15 | simpll 785 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑁 ∈ ℕ) | |
16 | expmordi 38354 | . . . . 5 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎 ∧ 𝑎 < 𝑏) ∧ 𝑁 ∈ ℕ) → (𝑎↑𝑁) < (𝑏↑𝑁)) | |
17 | 10, 12, 13, 14, 15, 16 | syl221anc 1506 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → (𝑎↑𝑁) < (𝑏↑𝑁)) |
18 | 17 | ex 403 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) → (𝑎 < 𝑏 → (𝑎↑𝑁) < (𝑏↑𝑁))) |
19 | 1, 2, 3, 4, 8, 18 | ltord1 10877 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)) → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) |
20 | 19 | 3impb 1149 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 ∈ wcel 2166 class class class wbr 4872 (class class class)co 6904 ℝcr 10250 0cc0 10251 < clt 10390 ≤ cle 10391 ℕcn 11349 ℕ0cn0 11617 ℝ+crp 12111 ↑cexp 13153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-n0 11618 df-z 11704 df-uz 11968 df-rp 12112 df-seq 13095 df-exp 13154 |
This theorem is referenced by: jm3.1lem1 38426 |
Copyright terms: Public domain | W3C validator |