MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexpmord Structured version   Visualization version   GIF version

Theorem rpexpmord 14181
Description: Base ordering relationship for exponentiation of positive reals to a fixed positive integer exponent. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
rpexpmord ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))

Proof of Theorem rpexpmord
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7423 . . 3 (𝑎 = 𝑏 → (𝑎𝑁) = (𝑏𝑁))
2 oveq1 7423 . . 3 (𝑎 = 𝐴 → (𝑎𝑁) = (𝐴𝑁))
3 oveq1 7423 . . 3 (𝑎 = 𝐵 → (𝑎𝑁) = (𝐵𝑁))
4 rpssre 13029 . . 3 + ⊆ ℝ
5 rpre 13030 . . . 4 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
6 nnnn0 12525 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 reexpcl 14092 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑎𝑁) ∈ ℝ)
85, 6, 7syl2anr 595 . . 3 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ ℝ+) → (𝑎𝑁) ∈ ℝ)
9 simplrl 775 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ+)
109rpred 13064 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ)
11 simplrr 776 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ+)
1211rpred 13064 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ)
139rpge0d 13068 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎)
14 simpr 483 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
15 simpll 765 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑁 ∈ ℕ)
16 expmordi 14180 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎𝑎 < 𝑏) ∧ 𝑁 ∈ ℕ) → (𝑎𝑁) < (𝑏𝑁))
1710, 12, 13, 14, 15, 16syl221anc 1378 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → (𝑎𝑁) < (𝑏𝑁))
1817ex 411 . . 3 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎 < 𝑏 → (𝑎𝑁) < (𝑏𝑁)))
191, 2, 3, 4, 8, 18ltord1 11781 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℝ+𝐵 ∈ ℝ+)) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))
20193impb 1112 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wcel 2099   class class class wbr 5145  (class class class)co 7416  cr 11148  0cc0 11149   < clt 11289  cle 11290  cn 12258  0cn0 12518  +crp 13022  cexp 14075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-seq 14016  df-exp 14076
This theorem is referenced by:  ltexp1d  14271  3lexlogpow2ineq2  41771  jm3.1lem1  42712
  Copyright terms: Public domain W3C validator