MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexpmord Structured version   Visualization version   GIF version

Theorem rpexpmord 14109
Description: Base ordering relationship for exponentiation of positive reals to a fixed positive integer exponent. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
rpexpmord ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))

Proof of Theorem rpexpmord
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . 3 (𝑎 = 𝑏 → (𝑎𝑁) = (𝑏𝑁))
2 oveq1 7376 . . 3 (𝑎 = 𝐴 → (𝑎𝑁) = (𝐴𝑁))
3 oveq1 7376 . . 3 (𝑎 = 𝐵 → (𝑎𝑁) = (𝐵𝑁))
4 rpssre 12935 . . 3 + ⊆ ℝ
5 rpre 12936 . . . 4 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
6 nnnn0 12425 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 reexpcl 14019 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑎𝑁) ∈ ℝ)
85, 6, 7syl2anr 597 . . 3 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ ℝ+) → (𝑎𝑁) ∈ ℝ)
9 simplrl 776 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ+)
109rpred 12971 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ)
11 simplrr 777 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ+)
1211rpred 12971 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ)
139rpge0d 12975 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎)
14 simpr 484 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
15 simpll 766 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑁 ∈ ℕ)
16 expmordi 14108 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎𝑎 < 𝑏) ∧ 𝑁 ∈ ℕ) → (𝑎𝑁) < (𝑏𝑁))
1710, 12, 13, 14, 15, 16syl221anc 1383 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → (𝑎𝑁) < (𝑏𝑁))
1817ex 412 . . 3 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎 < 𝑏 → (𝑎𝑁) < (𝑏𝑁)))
191, 2, 3, 4, 8, 18ltord1 11680 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℝ+𝐵 ∈ ℝ+)) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))
20193impb 1114 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5102  (class class class)co 7369  cr 11043  0cc0 11044   < clt 11184  cle 11185  cn 12162  0cn0 12418  +crp 12927  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003
This theorem is referenced by:  ltexp1d  14200  3lexlogpow2ineq2  42020  jm3.1lem1  42979
  Copyright terms: Public domain W3C validator