MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexpmord Structured version   Visualization version   GIF version

Theorem rpexpmord 13535
Description: Mantissa ordering relationship for exponentiation of positive reals. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
rpexpmord ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))

Proof of Theorem rpexpmord
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7165 . . 3 (𝑎 = 𝑏 → (𝑎𝑁) = (𝑏𝑁))
2 oveq1 7165 . . 3 (𝑎 = 𝐴 → (𝑎𝑁) = (𝐴𝑁))
3 oveq1 7165 . . 3 (𝑎 = 𝐵 → (𝑎𝑁) = (𝐵𝑁))
4 rpssre 12399 . . 3 + ⊆ ℝ
5 rpre 12400 . . . 4 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
6 nnnn0 11907 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 reexpcl 13449 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑎𝑁) ∈ ℝ)
85, 6, 7syl2anr 598 . . 3 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ ℝ+) → (𝑎𝑁) ∈ ℝ)
9 simplrl 775 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ+)
109rpred 12434 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ)
11 simplrr 776 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ+)
1211rpred 12434 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ)
139rpge0d 12438 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎)
14 simpr 487 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
15 simpll 765 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑁 ∈ ℕ)
16 expmordi 13534 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎𝑎 < 𝑏) ∧ 𝑁 ∈ ℕ) → (𝑎𝑁) < (𝑏𝑁))
1710, 12, 13, 14, 15, 16syl221anc 1377 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → (𝑎𝑁) < (𝑏𝑁))
1817ex 415 . . 3 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎 < 𝑏 → (𝑎𝑁) < (𝑏𝑁)))
191, 2, 3, 4, 8, 18ltord1 11168 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℝ+𝐵 ∈ ℝ+)) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))
20193impb 1111 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114   class class class wbr 5068  (class class class)co 7158  cr 10538  0cc0 10539   < clt 10677  cle 10678  cn 11640  0cn0 11900  +crp 12392  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433
This theorem is referenced by:  ltexp1d  39197  jm3.1lem1  39621
  Copyright terms: Public domain W3C validator