![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpexpmord | Structured version Visualization version GIF version |
Description: Base ordering relationship for exponentiation of positive reals to a fixed positive integer exponent. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
rpexpmord | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7419 | . . 3 ⊢ (𝑎 = 𝑏 → (𝑎↑𝑁) = (𝑏↑𝑁)) | |
2 | oveq1 7419 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎↑𝑁) = (𝐴↑𝑁)) | |
3 | oveq1 7419 | . . 3 ⊢ (𝑎 = 𝐵 → (𝑎↑𝑁) = (𝐵↑𝑁)) | |
4 | rpssre 12986 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
5 | rpre 12987 | . . . 4 ⊢ (𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ) | |
6 | nnnn0 12484 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
7 | reexpcl 14049 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑎↑𝑁) ∈ ℝ) | |
8 | 5, 6, 7 | syl2anr 596 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ ℝ+) → (𝑎↑𝑁) ∈ ℝ) |
9 | simplrl 774 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ+) | |
10 | 9 | rpred 13021 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ) |
11 | simplrr 775 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ+) | |
12 | 11 | rpred 13021 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ) |
13 | 9 | rpge0d 13025 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎) |
14 | simpr 484 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏) | |
15 | simpll 764 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑁 ∈ ℕ) | |
16 | expmordi 14137 | . . . . 5 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎 ∧ 𝑎 < 𝑏) ∧ 𝑁 ∈ ℕ) → (𝑎↑𝑁) < (𝑏↑𝑁)) | |
17 | 10, 12, 13, 14, 15, 16 | syl221anc 1380 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → (𝑎↑𝑁) < (𝑏↑𝑁)) |
18 | 17 | ex 412 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) → (𝑎 < 𝑏 → (𝑎↑𝑁) < (𝑏↑𝑁))) |
19 | 1, 2, 3, 4, 8, 18 | ltord1 11745 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)) → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) |
20 | 19 | 3impb 1114 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5149 (class class class)co 7412 ℝcr 11112 0cc0 11113 < clt 11253 ≤ cle 11254 ℕcn 12217 ℕ0cn0 12477 ℝ+crp 12979 ↑cexp 14032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-seq 13972 df-exp 14033 |
This theorem is referenced by: 3lexlogpow2ineq2 41231 ltexp1d 41516 jm3.1lem1 42059 |
Copyright terms: Public domain | W3C validator |