MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexpmord Structured version   Visualization version   GIF version

Theorem rpexpmord 14186
Description: Base ordering relationship for exponentiation of positive reals to a fixed positive integer exponent. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
rpexpmord ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))

Proof of Theorem rpexpmord
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . 3 (𝑎 = 𝑏 → (𝑎𝑁) = (𝑏𝑁))
2 oveq1 7412 . . 3 (𝑎 = 𝐴 → (𝑎𝑁) = (𝐴𝑁))
3 oveq1 7412 . . 3 (𝑎 = 𝐵 → (𝑎𝑁) = (𝐵𝑁))
4 rpssre 13016 . . 3 + ⊆ ℝ
5 rpre 13017 . . . 4 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
6 nnnn0 12508 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 reexpcl 14096 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑎𝑁) ∈ ℝ)
85, 6, 7syl2anr 597 . . 3 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ ℝ+) → (𝑎𝑁) ∈ ℝ)
9 simplrl 776 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ+)
109rpred 13051 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ)
11 simplrr 777 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ+)
1211rpred 13051 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ)
139rpge0d 13055 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎)
14 simpr 484 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
15 simpll 766 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → 𝑁 ∈ ℕ)
16 expmordi 14185 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎𝑎 < 𝑏) ∧ 𝑁 ∈ ℕ) → (𝑎𝑁) < (𝑏𝑁))
1710, 12, 13, 14, 15, 16syl221anc 1383 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ 𝑎 < 𝑏) → (𝑎𝑁) < (𝑏𝑁))
1817ex 412 . . 3 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎 < 𝑏 → (𝑎𝑁) < (𝑏𝑁)))
191, 2, 3, 4, 8, 18ltord1 11763 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℝ+𝐵 ∈ ℝ+)) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))
20193impb 1114 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129   < clt 11269  cle 11270  cn 12240  0cn0 12501  +crp 13008  cexp 14079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080
This theorem is referenced by:  ltexp1d  14277  3lexlogpow2ineq2  42072  jm3.1lem1  43041
  Copyright terms: Public domain W3C validator