Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modmul12d | Structured version Visualization version GIF version |
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.) |
Ref | Expression |
---|---|
modmul12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
modmul12d.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
modmul12d.3 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
modmul12d.4 | ⊢ (𝜑 → 𝐷 ∈ ℤ) |
modmul12d.5 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
modmul12d.6 | ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) |
modmul12d.7 | ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) |
Ref | Expression |
---|---|
modmul12d | ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modmul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zred 12426 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | modmul12d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
4 | 3 | zred 12426 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | modmul12d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
6 | modmul12d.5 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
7 | modmul12d.6 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) | |
8 | modmul1 13644 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸)) | |
9 | 2, 4, 5, 6, 7, 8 | syl221anc 1380 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸)) |
10 | 3 | zcnd 12427 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
11 | 5 | zcnd 12427 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
12 | 10, 11 | mulcomd 10996 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
13 | 12 | oveq1d 7290 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸)) |
14 | 5 | zred 12426 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
15 | modmul12d.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℤ) | |
16 | 15 | zred 12426 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
17 | modmul12d.7 | . . . 4 ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) | |
18 | modmul1 13644 | . . . 4 ⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐵 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸)) | |
19 | 14, 16, 3, 6, 17, 18 | syl221anc 1380 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸)) |
20 | 15 | zcnd 12427 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
21 | 20, 10 | mulcomd 10996 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷)) |
22 | 21 | oveq1d 7290 | . . 3 ⊢ (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
23 | 13, 19, 22 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
24 | 9, 23 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 · cmul 10876 ℤcz 12319 ℝ+crp 12730 mod cmo 13589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fl 13512 df-mod 13590 |
This theorem is referenced by: modexp 13953 fprodmodd 15707 smumul 16200 modxai 16769 elqaalem2 25480 lgsdir2lem5 26477 lgseisenlem2 26524 lgseisenlem3 26525 modexp2m1d 45064 |
Copyright terms: Public domain | W3C validator |