MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmul12d Structured version   Visualization version   GIF version

Theorem modmul12d 13943
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.)
Hypotheses
Ref Expression
modmul12d.1 (𝜑𝐴 ∈ ℤ)
modmul12d.2 (𝜑𝐵 ∈ ℤ)
modmul12d.3 (𝜑𝐶 ∈ ℤ)
modmul12d.4 (𝜑𝐷 ∈ ℤ)
modmul12d.5 (𝜑𝐸 ∈ ℝ+)
modmul12d.6 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
modmul12d.7 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
Assertion
Ref Expression
modmul12d (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))

Proof of Theorem modmul12d
StepHypRef Expression
1 modmul12d.1 . . . 4 (𝜑𝐴 ∈ ℤ)
21zred 12697 . . 3 (𝜑𝐴 ∈ ℝ)
3 modmul12d.2 . . . 4 (𝜑𝐵 ∈ ℤ)
43zred 12697 . . 3 (𝜑𝐵 ∈ ℝ)
5 modmul12d.3 . . 3 (𝜑𝐶 ∈ ℤ)
6 modmul12d.5 . . 3 (𝜑𝐸 ∈ ℝ+)
7 modmul12d.6 . . 3 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
8 modmul1 13942 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸))
92, 4, 5, 6, 7, 8syl221anc 1383 . 2 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸))
103zcnd 12698 . . . . 5 (𝜑𝐵 ∈ ℂ)
115zcnd 12698 . . . . 5 (𝜑𝐶 ∈ ℂ)
1210, 11mulcomd 11256 . . . 4 (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵))
1312oveq1d 7420 . . 3 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸))
145zred 12697 . . . 4 (𝜑𝐶 ∈ ℝ)
15 modmul12d.4 . . . . 5 (𝜑𝐷 ∈ ℤ)
1615zred 12697 . . . 4 (𝜑𝐷 ∈ ℝ)
17 modmul12d.7 . . . 4 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
18 modmul1 13942 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐵 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸))
1914, 16, 3, 6, 17, 18syl221anc 1383 . . 3 (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸))
2015zcnd 12698 . . . . 5 (𝜑𝐷 ∈ ℂ)
2120, 10mulcomd 11256 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷))
2221oveq1d 7420 . . 3 (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
2313, 19, 223eqtrd 2774 . 2 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
249, 23eqtrd 2770 1 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  (class class class)co 7405  cr 11128   · cmul 11134  cz 12588  +crp 13008   mod cmo 13886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-mod 13887
This theorem is referenced by:  modexp  14256  fprodmodd  16013  smumul  16512  modxai  17088  elqaalem2  26280  lgsdir2lem5  27292  lgseisenlem2  27339  lgseisenlem3  27340  modexp2m1d  47626
  Copyright terms: Public domain W3C validator