MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmul12d Structured version   Visualization version   GIF version

Theorem modmul12d 13824
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.)
Hypotheses
Ref Expression
modmul12d.1 (𝜑𝐴 ∈ ℤ)
modmul12d.2 (𝜑𝐵 ∈ ℤ)
modmul12d.3 (𝜑𝐶 ∈ ℤ)
modmul12d.4 (𝜑𝐷 ∈ ℤ)
modmul12d.5 (𝜑𝐸 ∈ ℝ+)
modmul12d.6 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
modmul12d.7 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
Assertion
Ref Expression
modmul12d (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))

Proof of Theorem modmul12d
StepHypRef Expression
1 modmul12d.1 . . . 4 (𝜑𝐴 ∈ ℤ)
21zred 12569 . . 3 (𝜑𝐴 ∈ ℝ)
3 modmul12d.2 . . . 4 (𝜑𝐵 ∈ ℤ)
43zred 12569 . . 3 (𝜑𝐵 ∈ ℝ)
5 modmul12d.3 . . 3 (𝜑𝐶 ∈ ℤ)
6 modmul12d.5 . . 3 (𝜑𝐸 ∈ ℝ+)
7 modmul12d.6 . . 3 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
8 modmul1 13823 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸))
92, 4, 5, 6, 7, 8syl221anc 1383 . 2 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸))
103zcnd 12570 . . . . 5 (𝜑𝐵 ∈ ℂ)
115zcnd 12570 . . . . 5 (𝜑𝐶 ∈ ℂ)
1210, 11mulcomd 11125 . . . 4 (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵))
1312oveq1d 7356 . . 3 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸))
145zred 12569 . . . 4 (𝜑𝐶 ∈ ℝ)
15 modmul12d.4 . . . . 5 (𝜑𝐷 ∈ ℤ)
1615zred 12569 . . . 4 (𝜑𝐷 ∈ ℝ)
17 modmul12d.7 . . . 4 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
18 modmul1 13823 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐵 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸))
1914, 16, 3, 6, 17, 18syl221anc 1383 . . 3 (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸))
2015zcnd 12570 . . . . 5 (𝜑𝐷 ∈ ℂ)
2120, 10mulcomd 11125 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷))
2221oveq1d 7356 . . 3 (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
2313, 19, 223eqtrd 2769 . 2 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
249, 23eqtrd 2765 1 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  (class class class)co 7341  cr 10997   · cmul 11003  cz 12460  +crp 12882   mod cmo 13765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fl 13688  df-mod 13766
This theorem is referenced by:  modexp  14137  fprodmodd  15896  smumul  16396  modxai  16972  elqaalem2  26248  lgsdir2lem5  27260  lgseisenlem2  27307  lgseisenlem3  27308  modexp2m1d  47622
  Copyright terms: Public domain W3C validator