![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modmul12d | Structured version Visualization version GIF version |
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.) |
Ref | Expression |
---|---|
modmul12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
modmul12d.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
modmul12d.3 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
modmul12d.4 | ⊢ (𝜑 → 𝐷 ∈ ℤ) |
modmul12d.5 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
modmul12d.6 | ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) |
modmul12d.7 | ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) |
Ref | Expression |
---|---|
modmul12d | ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modmul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zred 11771 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | modmul12d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
4 | 3 | zred 11771 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | modmul12d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
6 | modmul12d.5 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
7 | modmul12d.6 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) | |
8 | modmul1 12977 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸)) | |
9 | 2, 4, 5, 6, 7, 8 | syl221anc 1501 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸)) |
10 | 3 | zcnd 11772 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
11 | 5 | zcnd 11772 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
12 | 10, 11 | mulcomd 10351 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
13 | 12 | oveq1d 6894 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸)) |
14 | 5 | zred 11771 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
15 | modmul12d.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℤ) | |
16 | 15 | zred 11771 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
17 | modmul12d.7 | . . . 4 ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) | |
18 | modmul1 12977 | . . . 4 ⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐵 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸)) | |
19 | 14, 16, 3, 6, 17, 18 | syl221anc 1501 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸)) |
20 | 15 | zcnd 11772 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
21 | 20, 10 | mulcomd 10351 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷)) |
22 | 21 | oveq1d 6894 | . . 3 ⊢ (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
23 | 13, 19, 22 | 3eqtrd 2838 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
24 | 9, 23 | eqtrd 2834 | 1 ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 (class class class)co 6879 ℝcr 10224 · cmul 10230 ℤcz 11665 ℝ+crp 12073 mod cmo 12922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-pre-sup 10303 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-sup 8591 df-inf 8592 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-nn 11314 df-n0 11580 df-z 11666 df-uz 11930 df-rp 12074 df-fl 12847 df-mod 12923 |
This theorem is referenced by: modexp 13252 fprodmodd 15063 smumul 15549 modxai 16104 elqaalem2 24415 lgsdir2lem5 25405 lgseisenlem2 25452 lgseisenlem3 25453 modexp2m1d 42306 |
Copyright terms: Public domain | W3C validator |