MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmul12d Structured version   Visualization version   GIF version

Theorem modmul12d 12978
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.)
Hypotheses
Ref Expression
modmul12d.1 (𝜑𝐴 ∈ ℤ)
modmul12d.2 (𝜑𝐵 ∈ ℤ)
modmul12d.3 (𝜑𝐶 ∈ ℤ)
modmul12d.4 (𝜑𝐷 ∈ ℤ)
modmul12d.5 (𝜑𝐸 ∈ ℝ+)
modmul12d.6 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
modmul12d.7 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
Assertion
Ref Expression
modmul12d (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))

Proof of Theorem modmul12d
StepHypRef Expression
1 modmul12d.1 . . . 4 (𝜑𝐴 ∈ ℤ)
21zred 11771 . . 3 (𝜑𝐴 ∈ ℝ)
3 modmul12d.2 . . . 4 (𝜑𝐵 ∈ ℤ)
43zred 11771 . . 3 (𝜑𝐵 ∈ ℝ)
5 modmul12d.3 . . 3 (𝜑𝐶 ∈ ℤ)
6 modmul12d.5 . . 3 (𝜑𝐸 ∈ ℝ+)
7 modmul12d.6 . . 3 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
8 modmul1 12977 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸))
92, 4, 5, 6, 7, 8syl221anc 1501 . 2 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸))
103zcnd 11772 . . . . 5 (𝜑𝐵 ∈ ℂ)
115zcnd 11772 . . . . 5 (𝜑𝐶 ∈ ℂ)
1210, 11mulcomd 10351 . . . 4 (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵))
1312oveq1d 6894 . . 3 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸))
145zred 11771 . . . 4 (𝜑𝐶 ∈ ℝ)
15 modmul12d.4 . . . . 5 (𝜑𝐷 ∈ ℤ)
1615zred 11771 . . . 4 (𝜑𝐷 ∈ ℝ)
17 modmul12d.7 . . . 4 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
18 modmul1 12977 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐵 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸))
1914, 16, 3, 6, 17, 18syl221anc 1501 . . 3 (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸))
2015zcnd 11772 . . . . 5 (𝜑𝐷 ∈ ℂ)
2120, 10mulcomd 10351 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷))
2221oveq1d 6894 . . 3 (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
2313, 19, 223eqtrd 2838 . 2 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
249, 23eqtrd 2834 1 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  (class class class)co 6879  cr 10224   · cmul 10230  cz 11665  +crp 12073   mod cmo 12922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-sup 8591  df-inf 8592  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-n0 11580  df-z 11666  df-uz 11930  df-rp 12074  df-fl 12847  df-mod 12923
This theorem is referenced by:  modexp  13252  fprodmodd  15063  smumul  15549  modxai  16104  elqaalem2  24415  lgsdir2lem5  25405  lgseisenlem2  25452  lgseisenlem3  25453  modexp2m1d  42306
  Copyright terms: Public domain W3C validator