Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem42 Structured version   Visualization version   GIF version

Theorem stoweidlem42 42681
 Description: This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x > 1 - ε on B. Here 𝑋 is used to represent 𝑥 in the paper, and E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem42.1 𝑖𝜑
stoweidlem42.2 𝑡𝜑
stoweidlem42.3 𝑡𝑌
stoweidlem42.4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem42.5 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem42.6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem42.7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem42.8 (𝜑𝑀 ∈ ℕ)
stoweidlem42.9 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem42.10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
stoweidlem42.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem42.12 (𝜑𝐸 < (1 / 3))
stoweidlem42.13 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
stoweidlem42.14 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
stoweidlem42.15 (𝜑𝑇 ∈ V)
stoweidlem42.16 (𝜑𝐵𝑇)
Assertion
Ref Expression
stoweidlem42 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
Distinct variable groups:   𝑡,𝑖   𝐵,𝑖   𝑖,𝑀   𝑓,𝑔,𝑡,𝑇   𝑓,𝑖,𝑇   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑖,𝐸   𝑈,𝑖
Allowed substitution hints:   𝜑(𝑡,𝑖)   𝐵(𝑡,𝑓,𝑔)   𝑃(𝑡,𝑓,𝑔,𝑖)   𝐸(𝑡,𝑓,𝑔)   𝐹(𝑡,𝑖)   𝑀(𝑡)   𝑋(𝑡,𝑓,𝑔,𝑖)   𝑌(𝑡,𝑖)   𝑍(𝑡,𝑓,𝑔,𝑖)

Proof of Theorem stoweidlem42
Dummy variables 𝑎 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem42.2 . 2 𝑡𝜑
2 1red 10635 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
3 stoweidlem42.11 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
43rpred 12423 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
52, 4resubcld 11061 . . . . . . 7 (𝜑 → (1 − 𝐸) ∈ ℝ)
65adantr 484 . . . . . 6 ((𝜑𝑡𝐵) → (1 − 𝐸) ∈ ℝ)
7 stoweidlem42.8 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
84, 7nndivred 11683 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑀) ∈ ℝ)
92, 8resubcld 11061 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ)
109adantr 484 . . . . . . 7 ((𝜑𝑡𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ)
117nnnn0d 11947 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
1211adantr 484 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ ℕ0)
1310, 12reexpcld 13527 . . . . . 6 ((𝜑𝑡𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) ∈ ℝ)
14 elnnuz 12274 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
157, 14sylib 221 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
1615adantr 484 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ (ℤ‘1))
17 stoweidlem42.1 . . . . . . . . . . 11 𝑖𝜑
18 nfv 1915 . . . . . . . . . . 11 𝑖 𝑡𝐵
1917, 18nfan 1900 . . . . . . . . . 10 𝑖(𝜑𝑡𝐵)
20 nfv 1915 . . . . . . . . . 10 𝑖 𝑎 ∈ (1...𝑀)
2119, 20nfan 1900 . . . . . . . . 9 𝑖((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀))
22 stoweidlem42.6 . . . . . . . . . . . . 13 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
23 nfcv 2958 . . . . . . . . . . . . . 14 𝑖𝑇
24 nfmpt1 5131 . . . . . . . . . . . . . 14 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
2523, 24nfmpt 5130 . . . . . . . . . . . . 13 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
2622, 25nfcxfr 2956 . . . . . . . . . . . 12 𝑖𝐹
27 nfcv 2958 . . . . . . . . . . . 12 𝑖𝑡
2826, 27nffv 6659 . . . . . . . . . . 11 𝑖(𝐹𝑡)
29 nfcv 2958 . . . . . . . . . . 11 𝑖𝑎
3028, 29nffv 6659 . . . . . . . . . 10 𝑖((𝐹𝑡)‘𝑎)
3130nfel1 2974 . . . . . . . . 9 𝑖((𝐹𝑡)‘𝑎) ∈ ℝ
3221, 31nfim 1897 . . . . . . . 8 𝑖(((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)
33 eleq1 2880 . . . . . . . . . 10 (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑀) ↔ 𝑎 ∈ (1...𝑀)))
3433anbi2d 631 . . . . . . . . 9 (𝑖 = 𝑎 → (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀))))
35 fveq2 6649 . . . . . . . . . 10 (𝑖 = 𝑎 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑎))
3635eleq1d 2877 . . . . . . . . 9 (𝑖 = 𝑎 → (((𝐹𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹𝑡)‘𝑎) ∈ ℝ))
3734, 36imbi12d 348 . . . . . . . 8 (𝑖 = 𝑎 → ((((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)))
38 stoweidlem42.16 . . . . . . . . . . . 12 (𝜑𝐵𝑇)
3938sselda 3918 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑡𝑇)
40 ovex 7172 . . . . . . . . . . . 12 (1...𝑀) ∈ V
41 mptexg 6965 . . . . . . . . . . . 12 ((1...𝑀) ∈ V → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
4240, 41mp1i 13 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
4322fvmpt2 6760 . . . . . . . . . . 11 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
4439, 42, 43syl2anc 587 . . . . . . . . . 10 ((𝜑𝑡𝐵) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
45 stoweidlem42.9 . . . . . . . . . . . . . 14 (𝜑𝑈:(1...𝑀)⟶𝑌)
4645ffvelrnda 6832 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
47 simpl 486 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
4847, 46jca 515 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝑌))
49 eleq1 2880 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → (𝑓𝑌 ↔ (𝑈𝑖) ∈ 𝑌))
5049anbi2d 631 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝑌)))
51 feq1 6472 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
5250, 51imbi12d 348 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ)))
53 stoweidlem42.13 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
5452, 53vtoclg 3518 . . . . . . . . . . . . 13 ((𝑈𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ))
5546, 48, 54sylc 65 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5655adantlr 714 . . . . . . . . . . 11 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5739adantr 484 . . . . . . . . . . 11 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
5856, 57ffvelrnd 6833 . . . . . . . . . 10 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
5944, 58fvmpt2d 6762 . . . . . . . . 9 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡))
6059, 58eqeltrd 2893 . . . . . . . 8 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ)
6132, 37, 60chvarfv 2241 . . . . . . 7 (((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)
62 remulcl 10615 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ)
6362adantl 485 . . . . . . 7 (((𝜑𝑡𝐵) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ)
6416, 61, 63seqcl 13390 . . . . . 6 ((𝜑𝑡𝐵) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
653rpcnd 12425 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
667nncnd 11645 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
677nnne0d 11679 . . . . . . . . . . . 12 (𝜑𝑀 ≠ 0)
6865, 66, 67divcan1d 11410 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑀) · 𝑀) = 𝐸)
6968eqcomd 2807 . . . . . . . . . 10 (𝜑𝐸 = ((𝐸 / 𝑀) · 𝑀))
7069oveq2d 7155 . . . . . . . . 9 (𝜑 → (1 − 𝐸) = (1 − ((𝐸 / 𝑀) · 𝑀)))
71 1cnd 10629 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
7265, 66, 67divcld 11409 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) ∈ ℂ)
7372, 66mulcld 10654 . . . . . . . . . 10 (𝜑 → ((𝐸 / 𝑀) · 𝑀) ∈ ℂ)
7471, 73negsubd 10996 . . . . . . . . 9 (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 − ((𝐸 / 𝑀) · 𝑀)))
7572, 66mulneg1d 11086 . . . . . . . . . . 11 (𝜑 → (-(𝐸 / 𝑀) · 𝑀) = -((𝐸 / 𝑀) · 𝑀))
7675eqcomd 2807 . . . . . . . . . 10 (𝜑 → -((𝐸 / 𝑀) · 𝑀) = (-(𝐸 / 𝑀) · 𝑀))
7776oveq2d 7155 . . . . . . . . 9 (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 + (-(𝐸 / 𝑀) · 𝑀)))
7870, 74, 773eqtr2d 2842 . . . . . . . 8 (𝜑 → (1 − 𝐸) = (1 + (-(𝐸 / 𝑀) · 𝑀)))
798renegcld 11060 . . . . . . . . . 10 (𝜑 → -(𝐸 / 𝑀) ∈ ℝ)
807nnred 11644 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
81 3re 11709 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
8281a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
83 3ne0 11735 . . . . . . . . . . . . . . . . . 18 3 ≠ 0
8483a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≠ 0)
8582, 84rereccld 11460 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 3) ∈ ℝ)
86 stoweidlem42.12 . . . . . . . . . . . . . . . 16 (𝜑𝐸 < (1 / 3))
87 1lt3 11802 . . . . . . . . . . . . . . . . . . 19 1 < 3
8887a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 3)
89 0lt1 11155 . . . . . . . . . . . . . . . . . . . 20 0 < 1
9089a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 1)
91 3pos 11734 . . . . . . . . . . . . . . . . . . . 20 0 < 3
9291a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
93 ltdiv2 11519 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (1 < 3 ↔ (1 / 3) < (1 / 1)))
942, 90, 82, 92, 2, 90, 93syl222anc 1383 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 < 3 ↔ (1 / 3) < (1 / 1)))
9588, 94mpbid 235 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 / 3) < (1 / 1))
96 1div1e1 11323 . . . . . . . . . . . . . . . . 17 (1 / 1) = 1
9795, 96breqtrdi 5074 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 3) < 1)
984, 85, 2, 86, 97lttrd 10794 . . . . . . . . . . . . . . 15 (𝜑𝐸 < 1)
997nnge1d 11677 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑀)
1004, 2, 80, 98, 99ltletrd 10793 . . . . . . . . . . . . . 14 (𝜑𝐸 < 𝑀)
1014, 80, 100ltled 10781 . . . . . . . . . . . . 13 (𝜑𝐸𝑀)
1023rpregt0d 12429 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
1037nngt0d 11678 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑀)
104 lediv2 11523 . . . . . . . . . . . . . 14 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (𝐸𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)))
105102, 80, 103, 102, 104syl121anc 1372 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)))
106101, 105mpbid 235 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 𝐸))
1073rpcnne0d 12432 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
108 divid 11320 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) → (𝐸 / 𝐸) = 1)
109107, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝐸) = 1)
110106, 109breqtrd 5059 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) ≤ 1)
1118, 2lenegd 11212 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑀) ≤ 1 ↔ -1 ≤ -(𝐸 / 𝑀)))
112110, 111mpbid 235 . . . . . . . . . 10 (𝜑 → -1 ≤ -(𝐸 / 𝑀))
113 bernneq 13590 . . . . . . . . . 10 ((-(𝐸 / 𝑀) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ -1 ≤ -(𝐸 / 𝑀)) → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀))
11479, 11, 112, 113syl3anc 1368 . . . . . . . . 9 (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀))
11571, 72negsubd 10996 . . . . . . . . . 10 (𝜑 → (1 + -(𝐸 / 𝑀)) = (1 − (𝐸 / 𝑀)))
116115oveq1d 7154 . . . . . . . . 9 (𝜑 → ((1 + -(𝐸 / 𝑀))↑𝑀) = ((1 − (𝐸 / 𝑀))↑𝑀))
117114, 116breqtrd 5059 . . . . . . . 8 (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
11878, 117eqbrtrd 5055 . . . . . . 7 (𝜑 → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
119118adantr 484 . . . . . 6 ((𝜑𝑡𝐵) → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
120 eqid 2801 . . . . . . 7 seq1( · , (𝐹𝑡)) = seq1( · , (𝐹𝑡))
1217adantr 484 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ ℕ)
122 eqid 2801 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
12319, 58, 122fmptdf 6862 . . . . . . . 8 ((𝜑𝑡𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ)
12444feq1d 6476 . . . . . . . 8 ((𝜑𝑡𝐵) → ((𝐹𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ))
125123, 124mpbird 260 . . . . . . 7 ((𝜑𝑡𝐵) → (𝐹𝑡):(1...𝑀)⟶ℝ)
126 stoweidlem42.10 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
127126r19.21bi 3176 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝐵) → (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
128127an32s 651 . . . . . . . 8 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
129128, 59breqtrrd 5061 . . . . . . 7 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝐹𝑡)‘𝑖))
13072addid2d 10834 . . . . . . . . . . 11 (𝜑 → (0 + (𝐸 / 𝑀)) = (𝐸 / 𝑀))
131 lediv2 11523 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
1322, 90, 80, 103, 102, 131syl221anc 1378 . . . . . . . . . . . . . 14 (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
13399, 132mpbid 235 . . . . . . . . . . . . 13 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1))
13465div1d 11401 . . . . . . . . . . . . 13 (𝜑 → (𝐸 / 1) = 𝐸)
135133, 134breqtrd 5059 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝑀) ≤ 𝐸)
1368, 4, 2, 135, 98lelttrd 10791 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) < 1)
137130, 136eqbrtrd 5055 . . . . . . . . . 10 (𝜑 → (0 + (𝐸 / 𝑀)) < 1)
138 0red 10637 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
139138, 8, 2ltaddsubd 11233 . . . . . . . . . 10 (𝜑 → ((0 + (𝐸 / 𝑀)) < 1 ↔ 0 < (1 − (𝐸 / 𝑀))))
140137, 139mpbid 235 . . . . . . . . 9 (𝜑 → 0 < (1 − (𝐸 / 𝑀)))
1419, 140elrpd 12420 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ+)
142141adantr 484 . . . . . . 7 ((𝜑𝑡𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ+)
14328, 19, 120, 121, 125, 129, 142stoweidlem3 42642 . . . . . 6 ((𝜑𝑡𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) < (seq1( · , (𝐹𝑡))‘𝑀))
1446, 13, 64, 119, 143lelttrd 10791 . . . . 5 ((𝜑𝑡𝐵) → (1 − 𝐸) < (seq1( · , (𝐹𝑡))‘𝑀))
145 stoweidlem42.7 . . . . . . 7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
146145fvmpt2 6760 . . . . . 6 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
14739, 64, 146syl2anc 587 . . . . 5 ((𝜑𝑡𝐵) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
148144, 147breqtrrd 5061 . . . 4 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝑍𝑡))
149 simpl 486 . . . . 5 ((𝜑𝑡𝐵) → 𝜑)
150 stoweidlem42.3 . . . . . 6 𝑡𝑌
151 stoweidlem42.4 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
152 stoweidlem42.5 . . . . . 6 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
153 stoweidlem42.15 . . . . . 6 (𝜑𝑇 ∈ V)
154 stoweidlem42.14 . . . . . 6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
15517, 150, 151, 152, 22, 145, 153, 7, 45, 53, 154fmuldfeq 42222 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
156149, 39, 155syl2anc 587 . . . 4 ((𝜑𝑡𝐵) → (𝑋𝑡) = (𝑍𝑡))
157148, 156breqtrrd 5061 . . 3 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝑋𝑡))
158157ex 416 . 2 (𝜑 → (𝑡𝐵 → (1 − 𝐸) < (𝑋𝑡)))
1591, 158ralrimi 3183 1 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2112  Ⅎwnfc 2939   ≠ wne 2990  ∀wral 3109  Vcvv 3444   ⊆ wss 3884   class class class wbr 5033   ↦ cmpt 5113  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668   ≤ cle 10669   − cmin 10863  -cneg 10864   / cdiv 11290  ℕcn 11629  3c3 11685  ℕ0cn0 11889  ℤ≥cuz 12235  ℝ+crp 12381  ...cfz 12889  seqcseq 13368  ↑cexp 13429 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430 This theorem is referenced by:  stoweidlem51  42690
 Copyright terms: Public domain W3C validator