Step | Hyp | Ref
| Expression |
1 | | stoweidlem42.2 |
. 2
⊢
Ⅎ𝑡𝜑 |
2 | | 1red 10976 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
3 | | stoweidlem42.11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
4 | 3 | rpred 12772 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ℝ) |
5 | 2, 4 | resubcld 11403 |
. . . . . . 7
⊢ (𝜑 → (1 − 𝐸) ∈
ℝ) |
6 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (1 − 𝐸) ∈ ℝ) |
7 | | stoweidlem42.8 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) |
8 | 4, 7 | nndivred 12027 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 / 𝑀) ∈ ℝ) |
9 | 2, 8 | resubcld 11403 |
. . . . . . . 8
⊢ (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ) |
10 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ) |
11 | 7 | nnnn0d 12293 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
12 | 11 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → 𝑀 ∈
ℕ0) |
13 | 10, 12 | reexpcld 13881 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) ∈ ℝ) |
14 | | elnnuz 12622 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈
(ℤ≥‘1)) |
15 | 7, 14 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
16 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → 𝑀 ∈
(ℤ≥‘1)) |
17 | | stoweidlem42.1 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝜑 |
18 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖 𝑡 ∈ 𝐵 |
19 | 17, 18 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝜑 ∧ 𝑡 ∈ 𝐵) |
20 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑖 𝑎 ∈ (1...𝑀) |
21 | 19, 20 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑖((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑎 ∈ (1...𝑀)) |
22 | | stoweidlem42.6 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
23 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖𝑇 |
24 | | nfmpt1 5182 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) |
25 | 23, 24 | nfmpt 5181 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
26 | 22, 25 | nfcxfr 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖𝐹 |
27 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖𝑡 |
28 | 26, 27 | nffv 6784 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝐹‘𝑡) |
29 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝑎 |
30 | 28, 29 | nffv 6784 |
. . . . . . . . . 10
⊢
Ⅎ𝑖((𝐹‘𝑡)‘𝑎) |
31 | 30 | nfel1 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑖((𝐹‘𝑡)‘𝑎) ∈ ℝ |
32 | 21, 31 | nfim 1899 |
. . . . . . . 8
⊢
Ⅎ𝑖(((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑎) ∈ ℝ) |
33 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑀) ↔ 𝑎 ∈ (1...𝑀))) |
34 | 33 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑖 = 𝑎 → (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑎 ∈ (1...𝑀)))) |
35 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑎 → ((𝐹‘𝑡)‘𝑖) = ((𝐹‘𝑡)‘𝑎)) |
36 | 35 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑖 = 𝑎 → (((𝐹‘𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹‘𝑡)‘𝑎) ∈ ℝ)) |
37 | 34, 36 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑖 = 𝑎 → ((((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑎) ∈ ℝ))) |
38 | | stoweidlem42.16 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ⊆ 𝑇) |
39 | 38 | sselda 3921 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ 𝑇) |
40 | | ovex 7308 |
. . . . . . . . . . . 12
⊢
(1...𝑀) ∈
V |
41 | | mptexg 7097 |
. . . . . . . . . . . 12
⊢
((1...𝑀) ∈ V
→ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) ∈ V) |
42 | 40, 41 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) ∈ V) |
43 | 22 | fvmpt2 6886 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ 𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) ∈ V) → (𝐹‘𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
44 | 39, 42, 43 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝐹‘𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
45 | | stoweidlem42.9 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) |
46 | 45 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖) ∈ 𝑌) |
47 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝜑) |
48 | 47, 46 | jca 512 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈‘𝑖) ∈ 𝑌)) |
49 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑈‘𝑖) → (𝑓 ∈ 𝑌 ↔ (𝑈‘𝑖) ∈ 𝑌)) |
50 | 49 | anbi2d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑈‘𝑖) → ((𝜑 ∧ 𝑓 ∈ 𝑌) ↔ (𝜑 ∧ (𝑈‘𝑖) ∈ 𝑌))) |
51 | | feq1 6581 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑈‘𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘𝑖):𝑇⟶ℝ)) |
52 | 50, 51 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑈‘𝑖) → (((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝑌) → (𝑈‘𝑖):𝑇⟶ℝ))) |
53 | | stoweidlem42.13 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) |
54 | 52, 53 | vtoclg 3505 |
. . . . . . . . . . . . 13
⊢ ((𝑈‘𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝑌) → (𝑈‘𝑖):𝑇⟶ℝ)) |
55 | 46, 48, 54 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖):𝑇⟶ℝ) |
56 | 55 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖):𝑇⟶ℝ) |
57 | 39 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡 ∈ 𝑇) |
58 | 56, 57 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈‘𝑖)‘𝑡) ∈ ℝ) |
59 | 44, 58 | fvmpt2d 6888 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑖) = ((𝑈‘𝑖)‘𝑡)) |
60 | 59, 58 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑖) ∈ ℝ) |
61 | 32, 37, 60 | chvarfv 2233 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑎) ∈ ℝ) |
62 | | remulcl 10956 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ) |
63 | 62 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ) |
64 | 16, 61, 63 | seqcl 13743 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (seq1( · , (𝐹‘𝑡))‘𝑀) ∈ ℝ) |
65 | 3 | rpcnd 12774 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ ℂ) |
66 | 7 | nncnd 11989 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℂ) |
67 | 7 | nnne0d 12023 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ≠ 0) |
68 | 65, 66, 67 | divcan1d 11752 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸 / 𝑀) · 𝑀) = 𝐸) |
69 | 68 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 = ((𝐸 / 𝑀) · 𝑀)) |
70 | 69 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝜑 → (1 − 𝐸) = (1 − ((𝐸 / 𝑀) · 𝑀))) |
71 | | 1cnd 10970 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℂ) |
72 | 65, 66, 67 | divcld 11751 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 / 𝑀) ∈ ℂ) |
73 | 72, 66 | mulcld 10995 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸 / 𝑀) · 𝑀) ∈ ℂ) |
74 | 71, 73 | negsubd 11338 |
. . . . . . . . 9
⊢ (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 − ((𝐸 / 𝑀) · 𝑀))) |
75 | 72, 66 | mulneg1d 11428 |
. . . . . . . . . . 11
⊢ (𝜑 → (-(𝐸 / 𝑀) · 𝑀) = -((𝐸 / 𝑀) · 𝑀)) |
76 | 75 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → -((𝐸 / 𝑀) · 𝑀) = (-(𝐸 / 𝑀) · 𝑀)) |
77 | 76 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 + (-(𝐸 / 𝑀) · 𝑀))) |
78 | 70, 74, 77 | 3eqtr2d 2784 |
. . . . . . . 8
⊢ (𝜑 → (1 − 𝐸) = (1 + (-(𝐸 / 𝑀) · 𝑀))) |
79 | 8 | renegcld 11402 |
. . . . . . . . . 10
⊢ (𝜑 → -(𝐸 / 𝑀) ∈ ℝ) |
80 | 7 | nnred 11988 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℝ) |
81 | | 3re 12053 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ∈
ℝ |
82 | 81 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 3 ∈
ℝ) |
83 | | 3ne0 12079 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ≠
0 |
84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 3 ≠ 0) |
85 | 82, 84 | rereccld 11802 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 / 3) ∈
ℝ) |
86 | | stoweidlem42.12 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 < (1 / 3)) |
87 | | 1lt3 12146 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
3 |
88 | 87 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 < 3) |
89 | | 0lt1 11497 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 <
1 |
90 | 89 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 < 1) |
91 | | 3pos 12078 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 <
3 |
92 | 91 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 < 3) |
93 | | ltdiv2 11861 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (1
∈ ℝ ∧ 0 < 1)) → (1 < 3 ↔ (1 / 3) < (1 /
1))) |
94 | 2, 90, 82, 92, 2, 90, 93 | syl222anc 1385 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1 < 3 ↔ (1 / 3)
< (1 / 1))) |
95 | 88, 94 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1 / 3) < (1 /
1)) |
96 | | 1div1e1 11665 |
. . . . . . . . . . . . . . . . 17
⊢ (1 / 1) =
1 |
97 | 95, 96 | breqtrdi 5115 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 / 3) <
1) |
98 | 4, 85, 2, 86, 97 | lttrd 11136 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 < 1) |
99 | 7 | nnge1d 12021 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ≤ 𝑀) |
100 | 4, 2, 80, 98, 99 | ltletrd 11135 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 < 𝑀) |
101 | 4, 80, 100 | ltled 11123 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ≤ 𝑀) |
102 | 3 | rpregt0d 12778 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸)) |
103 | 7 | nngt0d 12022 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝑀) |
104 | | lediv2 11865 |
. . . . . . . . . . . . . 14
⊢ (((𝐸 ∈ ℝ ∧ 0 <
𝐸) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (𝐸 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸))) |
105 | 102, 80, 103, 102, 104 | syl121anc 1374 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸))) |
106 | 101, 105 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)) |
107 | 3 | rpcnne0d 12781 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) |
108 | | divid 11662 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) → (𝐸 / 𝐸) = 1) |
109 | 107, 108 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 / 𝐸) = 1) |
110 | 106, 109 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 / 𝑀) ≤ 1) |
111 | 8, 2 | lenegd 11554 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸 / 𝑀) ≤ 1 ↔ -1 ≤ -(𝐸 / 𝑀))) |
112 | 110, 111 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → -1 ≤ -(𝐸 / 𝑀)) |
113 | | bernneq 13944 |
. . . . . . . . . 10
⊢ ((-(𝐸 / 𝑀) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ -1 ≤
-(𝐸 / 𝑀)) → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀)) |
114 | 79, 11, 112, 113 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀)) |
115 | 71, 72 | negsubd 11338 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + -(𝐸 / 𝑀)) = (1 − (𝐸 / 𝑀))) |
116 | 115 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → ((1 + -(𝐸 / 𝑀))↑𝑀) = ((1 − (𝐸 / 𝑀))↑𝑀)) |
117 | 114, 116 | breqtrd 5100 |
. . . . . . . 8
⊢ (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 − (𝐸 / 𝑀))↑𝑀)) |
118 | 78, 117 | eqbrtrd 5096 |
. . . . . . 7
⊢ (𝜑 → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀)) |
119 | 118 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀)) |
120 | | eqid 2738 |
. . . . . . 7
⊢ seq1(
· , (𝐹‘𝑡)) = seq1( · , (𝐹‘𝑡)) |
121 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → 𝑀 ∈ ℕ) |
122 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) |
123 | 19, 58, 122 | fmptdf 6991 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)):(1...𝑀)⟶ℝ) |
124 | 44 | feq1d 6585 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → ((𝐹‘𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)):(1...𝑀)⟶ℝ)) |
125 | 123, 124 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝐹‘𝑡):(1...𝑀)⟶ℝ) |
126 | | stoweidlem42.10 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈‘𝑖)‘𝑡)) |
127 | 126 | r19.21bi 3134 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝐵) → (1 − (𝐸 / 𝑀)) < ((𝑈‘𝑖)‘𝑡)) |
128 | 127 | an32s 649 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝑈‘𝑖)‘𝑡)) |
129 | 128, 59 | breqtrrd 5102 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝐹‘𝑡)‘𝑖)) |
130 | 72 | addid2d 11176 |
. . . . . . . . . . 11
⊢ (𝜑 → (0 + (𝐸 / 𝑀)) = (𝐸 / 𝑀)) |
131 | | lediv2 11865 |
. . . . . . . . . . . . . . 15
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1))) |
132 | 2, 90, 80, 103, 102, 131 | syl221anc 1380 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1))) |
133 | 99, 132 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1)) |
134 | 65 | div1d 11743 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 / 1) = 𝐸) |
135 | 133, 134 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 / 𝑀) ≤ 𝐸) |
136 | 8, 4, 2, 135, 98 | lelttrd 11133 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 / 𝑀) < 1) |
137 | 130, 136 | eqbrtrd 5096 |
. . . . . . . . . 10
⊢ (𝜑 → (0 + (𝐸 / 𝑀)) < 1) |
138 | | 0red 10978 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℝ) |
139 | 138, 8, 2 | ltaddsubd 11575 |
. . . . . . . . . 10
⊢ (𝜑 → ((0 + (𝐸 / 𝑀)) < 1 ↔ 0 < (1 − (𝐸 / 𝑀)))) |
140 | 137, 139 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → 0 < (1 − (𝐸 / 𝑀))) |
141 | 9, 140 | elrpd 12769 |
. . . . . . . 8
⊢ (𝜑 → (1 − (𝐸 / 𝑀)) ∈
ℝ+) |
142 | 141 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (1 − (𝐸 / 𝑀)) ∈
ℝ+) |
143 | 28, 19, 120, 121, 125, 129, 142 | stoweidlem3 43544 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) < (seq1( · , (𝐹‘𝑡))‘𝑀)) |
144 | 6, 13, 64, 119, 143 | lelttrd 11133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (1 − 𝐸) < (seq1( · , (𝐹‘𝑡))‘𝑀)) |
145 | | stoweidlem42.7 |
. . . . . . 7
⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) |
146 | 145 | fvmpt2 6886 |
. . . . . 6
⊢ ((𝑡 ∈ 𝑇 ∧ (seq1( · , (𝐹‘𝑡))‘𝑀) ∈ ℝ) → (𝑍‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀)) |
147 | 39, 64, 146 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝑍‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀)) |
148 | 144, 147 | breqtrrd 5102 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (1 − 𝐸) < (𝑍‘𝑡)) |
149 | | simpl 483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → 𝜑) |
150 | | stoweidlem42.3 |
. . . . . 6
⊢
Ⅎ𝑡𝑌 |
151 | | stoweidlem42.4 |
. . . . . 6
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
152 | | stoweidlem42.5 |
. . . . . 6
⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) |
153 | | stoweidlem42.15 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ V) |
154 | | stoweidlem42.14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) |
155 | 17, 150, 151, 152, 22, 145, 153, 7, 45, 53, 154 | fmuldfeq 43124 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑋‘𝑡) = (𝑍‘𝑡)) |
156 | 149, 39, 155 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝑋‘𝑡) = (𝑍‘𝑡)) |
157 | 148, 156 | breqtrrd 5102 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (1 − 𝐸) < (𝑋‘𝑡)) |
158 | 157 | ex 413 |
. 2
⊢ (𝜑 → (𝑡 ∈ 𝐵 → (1 − 𝐸) < (𝑋‘𝑡))) |
159 | 1, 158 | ralrimi 3141 |
1
⊢ (𝜑 → ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡)) |