Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem42 Structured version   Visualization version   GIF version

Theorem stoweidlem42 40920
Description: This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x > 1 - ε on B. Here 𝑋 is used to represent 𝑥 in the paper, and E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem42.1 𝑖𝜑
stoweidlem42.2 𝑡𝜑
stoweidlem42.3 𝑡𝑌
stoweidlem42.4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem42.5 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem42.6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem42.7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem42.8 (𝜑𝑀 ∈ ℕ)
stoweidlem42.9 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem42.10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
stoweidlem42.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem42.12 (𝜑𝐸 < (1 / 3))
stoweidlem42.13 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
stoweidlem42.14 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
stoweidlem42.15 (𝜑𝑇 ∈ V)
stoweidlem42.16 (𝜑𝐵𝑇)
Assertion
Ref Expression
stoweidlem42 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
Distinct variable groups:   𝑡,𝑖   𝐵,𝑖   𝑖,𝑀   𝑓,𝑔,𝑡,𝑇   𝑓,𝑖,𝑇   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑖,𝐸   𝑈,𝑖
Allowed substitution hints:   𝜑(𝑡,𝑖)   𝐵(𝑡,𝑓,𝑔)   𝑃(𝑡,𝑓,𝑔,𝑖)   𝐸(𝑡,𝑓,𝑔)   𝐹(𝑡,𝑖)   𝑀(𝑡)   𝑋(𝑡,𝑓,𝑔,𝑖)   𝑌(𝑡,𝑖)   𝑍(𝑡,𝑓,𝑔,𝑖)

Proof of Theorem stoweidlem42
Dummy variables 𝑎 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem42.2 . 2 𝑡𝜑
2 1red 10298 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
3 stoweidlem42.11 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
43rpred 12075 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
52, 4resubcld 10716 . . . . . . 7 (𝜑 → (1 − 𝐸) ∈ ℝ)
65adantr 472 . . . . . 6 ((𝜑𝑡𝐵) → (1 − 𝐸) ∈ ℝ)
7 stoweidlem42.8 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
84, 7nndivred 11330 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑀) ∈ ℝ)
92, 8resubcld 10716 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ)
109adantr 472 . . . . . . 7 ((𝜑𝑡𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ)
117nnnn0d 11602 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
1211adantr 472 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ ℕ0)
1310, 12reexpcld 13237 . . . . . 6 ((𝜑𝑡𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) ∈ ℝ)
14 elnnuz 11929 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
157, 14sylib 209 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
1615adantr 472 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ (ℤ‘1))
17 stoweidlem42.1 . . . . . . . . . . 11 𝑖𝜑
18 nfv 2009 . . . . . . . . . . 11 𝑖 𝑡𝐵
1917, 18nfan 1998 . . . . . . . . . 10 𝑖(𝜑𝑡𝐵)
20 nfv 2009 . . . . . . . . . 10 𝑖 𝑎 ∈ (1...𝑀)
2119, 20nfan 1998 . . . . . . . . 9 𝑖((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀))
22 stoweidlem42.6 . . . . . . . . . . . . 13 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
23 nfcv 2907 . . . . . . . . . . . . . 14 𝑖𝑇
24 nfmpt1 4908 . . . . . . . . . . . . . 14 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
2523, 24nfmpt 4907 . . . . . . . . . . . . 13 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
2622, 25nfcxfr 2905 . . . . . . . . . . . 12 𝑖𝐹
27 nfcv 2907 . . . . . . . . . . . 12 𝑖𝑡
2826, 27nffv 6389 . . . . . . . . . . 11 𝑖(𝐹𝑡)
29 nfcv 2907 . . . . . . . . . . 11 𝑖𝑎
3028, 29nffv 6389 . . . . . . . . . 10 𝑖((𝐹𝑡)‘𝑎)
3130nfel1 2922 . . . . . . . . 9 𝑖((𝐹𝑡)‘𝑎) ∈ ℝ
3221, 31nfim 1995 . . . . . . . 8 𝑖(((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)
33 eleq1 2832 . . . . . . . . . 10 (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑀) ↔ 𝑎 ∈ (1...𝑀)))
3433anbi2d 622 . . . . . . . . 9 (𝑖 = 𝑎 → (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀))))
35 fveq2 6379 . . . . . . . . . 10 (𝑖 = 𝑎 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑎))
3635eleq1d 2829 . . . . . . . . 9 (𝑖 = 𝑎 → (((𝐹𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹𝑡)‘𝑎) ∈ ℝ))
3734, 36imbi12d 335 . . . . . . . 8 (𝑖 = 𝑎 → ((((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)))
38 stoweidlem42.16 . . . . . . . . . . . 12 (𝜑𝐵𝑇)
3938sselda 3763 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑡𝑇)
40 ovex 6878 . . . . . . . . . . . 12 (1...𝑀) ∈ V
41 mptexg 6681 . . . . . . . . . . . 12 ((1...𝑀) ∈ V → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
4240, 41mp1i 13 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
4322fvmpt2 6484 . . . . . . . . . . 11 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
4439, 42, 43syl2anc 579 . . . . . . . . . 10 ((𝜑𝑡𝐵) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
45 stoweidlem42.9 . . . . . . . . . . . . . 14 (𝜑𝑈:(1...𝑀)⟶𝑌)
4645ffvelrnda 6553 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
47 simpl 474 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
4847, 46jca 507 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝑌))
49 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → (𝑓𝑌 ↔ (𝑈𝑖) ∈ 𝑌))
5049anbi2d 622 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝑌)))
51 feq1 6206 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
5250, 51imbi12d 335 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ)))
53 stoweidlem42.13 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
5452, 53vtoclg 3418 . . . . . . . . . . . . 13 ((𝑈𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ))
5546, 48, 54sylc 65 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5655adantlr 706 . . . . . . . . . . 11 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5739adantr 472 . . . . . . . . . . 11 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
5856, 57ffvelrnd 6554 . . . . . . . . . 10 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
5944, 58fvmpt2d 6486 . . . . . . . . 9 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡))
6059, 58eqeltrd 2844 . . . . . . . 8 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ)
6132, 37, 60chvar 2368 . . . . . . 7 (((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)
62 remulcl 10278 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ)
6362adantl 473 . . . . . . 7 (((𝜑𝑡𝐵) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ)
6416, 61, 63seqcl 13033 . . . . . 6 ((𝜑𝑡𝐵) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
653rpcnd 12077 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
667nncnd 11296 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
677nnne0d 11326 . . . . . . . . . . . 12 (𝜑𝑀 ≠ 0)
6865, 66, 67divcan1d 11060 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑀) · 𝑀) = 𝐸)
6968eqcomd 2771 . . . . . . . . . 10 (𝜑𝐸 = ((𝐸 / 𝑀) · 𝑀))
7069oveq2d 6862 . . . . . . . . 9 (𝜑 → (1 − 𝐸) = (1 − ((𝐸 / 𝑀) · 𝑀)))
71 1cnd 10292 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
7265, 66, 67divcld 11059 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) ∈ ℂ)
7372, 66mulcld 10318 . . . . . . . . . 10 (𝜑 → ((𝐸 / 𝑀) · 𝑀) ∈ ℂ)
7471, 73negsubd 10656 . . . . . . . . 9 (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 − ((𝐸 / 𝑀) · 𝑀)))
7572, 66mulneg1d 10741 . . . . . . . . . . 11 (𝜑 → (-(𝐸 / 𝑀) · 𝑀) = -((𝐸 / 𝑀) · 𝑀))
7675eqcomd 2771 . . . . . . . . . 10 (𝜑 → -((𝐸 / 𝑀) · 𝑀) = (-(𝐸 / 𝑀) · 𝑀))
7776oveq2d 6862 . . . . . . . . 9 (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 + (-(𝐸 / 𝑀) · 𝑀)))
7870, 74, 773eqtr2d 2805 . . . . . . . 8 (𝜑 → (1 − 𝐸) = (1 + (-(𝐸 / 𝑀) · 𝑀)))
798renegcld 10715 . . . . . . . . . 10 (𝜑 → -(𝐸 / 𝑀) ∈ ℝ)
807nnred 11295 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
81 3re 11356 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
8281a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
83 3ne0 11389 . . . . . . . . . . . . . . . . . 18 3 ≠ 0
8483a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≠ 0)
8582, 84rereccld 11110 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 3) ∈ ℝ)
86 stoweidlem42.12 . . . . . . . . . . . . . . . 16 (𝜑𝐸 < (1 / 3))
87 1lt3 11455 . . . . . . . . . . . . . . . . . . 19 1 < 3
8887a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 3)
89 0lt1 10808 . . . . . . . . . . . . . . . . . . . 20 0 < 1
9089a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 1)
91 3pos 11388 . . . . . . . . . . . . . . . . . . . 20 0 < 3
9291a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
93 ltdiv2 11167 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (1 < 3 ↔ (1 / 3) < (1 / 1)))
942, 90, 82, 92, 2, 90, 93syl222anc 1505 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 < 3 ↔ (1 / 3) < (1 / 1)))
9588, 94mpbid 223 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 / 3) < (1 / 1))
96 1div1e1 10975 . . . . . . . . . . . . . . . . 17 (1 / 1) = 1
9795, 96syl6breq 4852 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 3) < 1)
984, 85, 2, 86, 97lttrd 10456 . . . . . . . . . . . . . . 15 (𝜑𝐸 < 1)
997nnge1d 11324 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑀)
1004, 2, 80, 98, 99ltletrd 10455 . . . . . . . . . . . . . 14 (𝜑𝐸 < 𝑀)
1014, 80, 100ltled 10443 . . . . . . . . . . . . 13 (𝜑𝐸𝑀)
1023rpregt0d 12081 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
1037nngt0d 11325 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑀)
104 lediv2 11171 . . . . . . . . . . . . . 14 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (𝐸𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)))
105102, 80, 103, 102, 104syl121anc 1494 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)))
106101, 105mpbid 223 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 𝐸))
1073rpcnne0d 12084 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
108 divid 10972 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) → (𝐸 / 𝐸) = 1)
109107, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝐸) = 1)
110106, 109breqtrd 4837 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) ≤ 1)
1118, 2lenegd 10864 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑀) ≤ 1 ↔ -1 ≤ -(𝐸 / 𝑀)))
112110, 111mpbid 223 . . . . . . . . . 10 (𝜑 → -1 ≤ -(𝐸 / 𝑀))
113 bernneq 13202 . . . . . . . . . 10 ((-(𝐸 / 𝑀) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ -1 ≤ -(𝐸 / 𝑀)) → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀))
11479, 11, 112, 113syl3anc 1490 . . . . . . . . 9 (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀))
11571, 72negsubd 10656 . . . . . . . . . 10 (𝜑 → (1 + -(𝐸 / 𝑀)) = (1 − (𝐸 / 𝑀)))
116115oveq1d 6861 . . . . . . . . 9 (𝜑 → ((1 + -(𝐸 / 𝑀))↑𝑀) = ((1 − (𝐸 / 𝑀))↑𝑀))
117114, 116breqtrd 4837 . . . . . . . 8 (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
11878, 117eqbrtrd 4833 . . . . . . 7 (𝜑 → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
119118adantr 472 . . . . . 6 ((𝜑𝑡𝐵) → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
120 eqid 2765 . . . . . . 7 seq1( · , (𝐹𝑡)) = seq1( · , (𝐹𝑡))
1217adantr 472 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ ℕ)
122 eqid 2765 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
12319, 58, 122fmptdf 6581 . . . . . . . 8 ((𝜑𝑡𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ)
12444feq1d 6210 . . . . . . . 8 ((𝜑𝑡𝐵) → ((𝐹𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ))
125123, 124mpbird 248 . . . . . . 7 ((𝜑𝑡𝐵) → (𝐹𝑡):(1...𝑀)⟶ℝ)
126 stoweidlem42.10 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
127126r19.21bi 3079 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝐵) → (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
128127an32s 642 . . . . . . . 8 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
129128, 59breqtrrd 4839 . . . . . . 7 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝐹𝑡)‘𝑖))
13072addid2d 10495 . . . . . . . . . . 11 (𝜑 → (0 + (𝐸 / 𝑀)) = (𝐸 / 𝑀))
131 lediv2 11171 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
1322, 90, 80, 103, 102, 131syl221anc 1500 . . . . . . . . . . . . . 14 (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
13399, 132mpbid 223 . . . . . . . . . . . . 13 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1))
13465div1d 11051 . . . . . . . . . . . . 13 (𝜑 → (𝐸 / 1) = 𝐸)
135133, 134breqtrd 4837 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝑀) ≤ 𝐸)
1368, 4, 2, 135, 98lelttrd 10453 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) < 1)
137130, 136eqbrtrd 4833 . . . . . . . . . 10 (𝜑 → (0 + (𝐸 / 𝑀)) < 1)
138 0red 10301 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
139138, 8, 2ltaddsubd 10885 . . . . . . . . . 10 (𝜑 → ((0 + (𝐸 / 𝑀)) < 1 ↔ 0 < (1 − (𝐸 / 𝑀))))
140137, 139mpbid 223 . . . . . . . . 9 (𝜑 → 0 < (1 − (𝐸 / 𝑀)))
1419, 140elrpd 12072 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ+)
142141adantr 472 . . . . . . 7 ((𝜑𝑡𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ+)
14328, 19, 120, 121, 125, 129, 142stoweidlem3 40881 . . . . . 6 ((𝜑𝑡𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) < (seq1( · , (𝐹𝑡))‘𝑀))
1446, 13, 64, 119, 143lelttrd 10453 . . . . 5 ((𝜑𝑡𝐵) → (1 − 𝐸) < (seq1( · , (𝐹𝑡))‘𝑀))
145 stoweidlem42.7 . . . . . . 7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
146145fvmpt2 6484 . . . . . 6 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
14739, 64, 146syl2anc 579 . . . . 5 ((𝜑𝑡𝐵) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
148144, 147breqtrrd 4839 . . . 4 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝑍𝑡))
149 simpl 474 . . . . 5 ((𝜑𝑡𝐵) → 𝜑)
150 stoweidlem42.3 . . . . . 6 𝑡𝑌
151 stoweidlem42.4 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
152 stoweidlem42.5 . . . . . 6 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
153 stoweidlem42.15 . . . . . 6 (𝜑𝑇 ∈ V)
154 stoweidlem42.14 . . . . . 6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
15517, 150, 151, 152, 22, 145, 153, 7, 45, 53, 154fmuldfeq 40477 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
156149, 39, 155syl2anc 579 . . . 4 ((𝜑𝑡𝐵) → (𝑋𝑡) = (𝑍𝑡))
157148, 156breqtrrd 4839 . . 3 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝑋𝑡))
158157ex 401 . 2 (𝜑 → (𝑡𝐵 → (1 − 𝐸) < (𝑋𝑡)))
1591, 158ralrimi 3104 1 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wnf 1878  wcel 2155  wnfc 2894  wne 2937  wral 3055  Vcvv 3350  wss 3734   class class class wbr 4811  cmpt 4890  wf 6066  cfv 6070  (class class class)co 6846  cmpt2 6848  cc 10191  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198   < clt 10332  cle 10333  cmin 10524  -cneg 10525   / cdiv 10942  cn 11278  3c3 11332  0cn0 11542  cuz 11891  +crp 12033  ...cfz 12538  seqcseq 13013  cexp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-n0 11543  df-z 11629  df-uz 11892  df-rp 12034  df-fz 12539  df-fzo 12679  df-seq 13014  df-exp 13073
This theorem is referenced by:  stoweidlem51  40929
  Copyright terms: Public domain W3C validator