Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem42 Structured version   Visualization version   GIF version

Theorem stoweidlem42 45998
Description: This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x > 1 - ε on B. Here 𝑋 is used to represent 𝑥 in the paper, and E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem42.1 𝑖𝜑
stoweidlem42.2 𝑡𝜑
stoweidlem42.3 𝑡𝑌
stoweidlem42.4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem42.5 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem42.6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem42.7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem42.8 (𝜑𝑀 ∈ ℕ)
stoweidlem42.9 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem42.10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
stoweidlem42.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem42.12 (𝜑𝐸 < (1 / 3))
stoweidlem42.13 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
stoweidlem42.14 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
stoweidlem42.15 (𝜑𝑇 ∈ V)
stoweidlem42.16 (𝜑𝐵𝑇)
Assertion
Ref Expression
stoweidlem42 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
Distinct variable groups:   𝑡,𝑖   𝐵,𝑖   𝑖,𝑀   𝑓,𝑔,𝑡,𝑇   𝑓,𝑖,𝑇   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑖,𝐸   𝑈,𝑖
Allowed substitution hints:   𝜑(𝑡,𝑖)   𝐵(𝑡,𝑓,𝑔)   𝑃(𝑡,𝑓,𝑔,𝑖)   𝐸(𝑡,𝑓,𝑔)   𝐹(𝑡,𝑖)   𝑀(𝑡)   𝑋(𝑡,𝑓,𝑔,𝑖)   𝑌(𝑡,𝑖)   𝑍(𝑡,𝑓,𝑔,𝑖)

Proof of Theorem stoweidlem42
Dummy variables 𝑎 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem42.2 . 2 𝑡𝜑
2 1red 11260 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
3 stoweidlem42.11 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
43rpred 13075 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
52, 4resubcld 11689 . . . . . . 7 (𝜑 → (1 − 𝐸) ∈ ℝ)
65adantr 480 . . . . . 6 ((𝜑𝑡𝐵) → (1 − 𝐸) ∈ ℝ)
7 stoweidlem42.8 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
84, 7nndivred 12318 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑀) ∈ ℝ)
92, 8resubcld 11689 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ)
109adantr 480 . . . . . . 7 ((𝜑𝑡𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ)
117nnnn0d 12585 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
1211adantr 480 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ ℕ0)
1310, 12reexpcld 14200 . . . . . 6 ((𝜑𝑡𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) ∈ ℝ)
14 elnnuz 12920 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
157, 14sylib 218 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
1615adantr 480 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ (ℤ‘1))
17 stoweidlem42.1 . . . . . . . . . . 11 𝑖𝜑
18 nfv 1912 . . . . . . . . . . 11 𝑖 𝑡𝐵
1917, 18nfan 1897 . . . . . . . . . 10 𝑖(𝜑𝑡𝐵)
20 nfv 1912 . . . . . . . . . 10 𝑖 𝑎 ∈ (1...𝑀)
2119, 20nfan 1897 . . . . . . . . 9 𝑖((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀))
22 stoweidlem42.6 . . . . . . . . . . . . 13 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
23 nfcv 2903 . . . . . . . . . . . . . 14 𝑖𝑇
24 nfmpt1 5256 . . . . . . . . . . . . . 14 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
2523, 24nfmpt 5255 . . . . . . . . . . . . 13 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
2622, 25nfcxfr 2901 . . . . . . . . . . . 12 𝑖𝐹
27 nfcv 2903 . . . . . . . . . . . 12 𝑖𝑡
2826, 27nffv 6917 . . . . . . . . . . 11 𝑖(𝐹𝑡)
29 nfcv 2903 . . . . . . . . . . 11 𝑖𝑎
3028, 29nffv 6917 . . . . . . . . . 10 𝑖((𝐹𝑡)‘𝑎)
3130nfel1 2920 . . . . . . . . 9 𝑖((𝐹𝑡)‘𝑎) ∈ ℝ
3221, 31nfim 1894 . . . . . . . 8 𝑖(((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)
33 eleq1 2827 . . . . . . . . . 10 (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑀) ↔ 𝑎 ∈ (1...𝑀)))
3433anbi2d 630 . . . . . . . . 9 (𝑖 = 𝑎 → (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀))))
35 fveq2 6907 . . . . . . . . . 10 (𝑖 = 𝑎 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑎))
3635eleq1d 2824 . . . . . . . . 9 (𝑖 = 𝑎 → (((𝐹𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹𝑡)‘𝑎) ∈ ℝ))
3734, 36imbi12d 344 . . . . . . . 8 (𝑖 = 𝑎 → ((((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)))
38 stoweidlem42.16 . . . . . . . . . . . 12 (𝜑𝐵𝑇)
3938sselda 3995 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑡𝑇)
40 ovex 7464 . . . . . . . . . . . 12 (1...𝑀) ∈ V
41 mptexg 7241 . . . . . . . . . . . 12 ((1...𝑀) ∈ V → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
4240, 41mp1i 13 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
4322fvmpt2 7027 . . . . . . . . . . 11 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
4439, 42, 43syl2anc 584 . . . . . . . . . 10 ((𝜑𝑡𝐵) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
45 stoweidlem42.9 . . . . . . . . . . . . . 14 (𝜑𝑈:(1...𝑀)⟶𝑌)
4645ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
47 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
4847, 46jca 511 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝑌))
49 eleq1 2827 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → (𝑓𝑌 ↔ (𝑈𝑖) ∈ 𝑌))
5049anbi2d 630 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝑌)))
51 feq1 6717 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
5250, 51imbi12d 344 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ)))
53 stoweidlem42.13 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
5452, 53vtoclg 3554 . . . . . . . . . . . . 13 ((𝑈𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ))
5546, 48, 54sylc 65 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5655adantlr 715 . . . . . . . . . . 11 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5739adantr 480 . . . . . . . . . . 11 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
5856, 57ffvelcdmd 7105 . . . . . . . . . 10 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
5944, 58fvmpt2d 7029 . . . . . . . . 9 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡))
6059, 58eqeltrd 2839 . . . . . . . 8 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ)
6132, 37, 60chvarfv 2238 . . . . . . 7 (((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)
62 remulcl 11238 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ)
6362adantl 481 . . . . . . 7 (((𝜑𝑡𝐵) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ)
6416, 61, 63seqcl 14060 . . . . . 6 ((𝜑𝑡𝐵) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
653rpcnd 13077 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
667nncnd 12280 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
677nnne0d 12314 . . . . . . . . . . . 12 (𝜑𝑀 ≠ 0)
6865, 66, 67divcan1d 12042 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑀) · 𝑀) = 𝐸)
6968eqcomd 2741 . . . . . . . . . 10 (𝜑𝐸 = ((𝐸 / 𝑀) · 𝑀))
7069oveq2d 7447 . . . . . . . . 9 (𝜑 → (1 − 𝐸) = (1 − ((𝐸 / 𝑀) · 𝑀)))
71 1cnd 11254 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
7265, 66, 67divcld 12041 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) ∈ ℂ)
7372, 66mulcld 11279 . . . . . . . . . 10 (𝜑 → ((𝐸 / 𝑀) · 𝑀) ∈ ℂ)
7471, 73negsubd 11624 . . . . . . . . 9 (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 − ((𝐸 / 𝑀) · 𝑀)))
7572, 66mulneg1d 11714 . . . . . . . . . . 11 (𝜑 → (-(𝐸 / 𝑀) · 𝑀) = -((𝐸 / 𝑀) · 𝑀))
7675eqcomd 2741 . . . . . . . . . 10 (𝜑 → -((𝐸 / 𝑀) · 𝑀) = (-(𝐸 / 𝑀) · 𝑀))
7776oveq2d 7447 . . . . . . . . 9 (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 + (-(𝐸 / 𝑀) · 𝑀)))
7870, 74, 773eqtr2d 2781 . . . . . . . 8 (𝜑 → (1 − 𝐸) = (1 + (-(𝐸 / 𝑀) · 𝑀)))
798renegcld 11688 . . . . . . . . . 10 (𝜑 → -(𝐸 / 𝑀) ∈ ℝ)
807nnred 12279 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
81 3re 12344 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
8281a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
83 3ne0 12370 . . . . . . . . . . . . . . . . . 18 3 ≠ 0
8483a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≠ 0)
8582, 84rereccld 12092 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 3) ∈ ℝ)
86 stoweidlem42.12 . . . . . . . . . . . . . . . 16 (𝜑𝐸 < (1 / 3))
87 1lt3 12437 . . . . . . . . . . . . . . . . . . 19 1 < 3
8887a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 3)
89 0lt1 11783 . . . . . . . . . . . . . . . . . . . 20 0 < 1
9089a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 1)
91 3pos 12369 . . . . . . . . . . . . . . . . . . . 20 0 < 3
9291a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
93 ltdiv2 12152 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (1 < 3 ↔ (1 / 3) < (1 / 1)))
942, 90, 82, 92, 2, 90, 93syl222anc 1385 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 < 3 ↔ (1 / 3) < (1 / 1)))
9588, 94mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 / 3) < (1 / 1))
96 1div1e1 11956 . . . . . . . . . . . . . . . . 17 (1 / 1) = 1
9795, 96breqtrdi 5189 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 3) < 1)
984, 85, 2, 86, 97lttrd 11420 . . . . . . . . . . . . . . 15 (𝜑𝐸 < 1)
997nnge1d 12312 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑀)
1004, 2, 80, 98, 99ltletrd 11419 . . . . . . . . . . . . . 14 (𝜑𝐸 < 𝑀)
1014, 80, 100ltled 11407 . . . . . . . . . . . . 13 (𝜑𝐸𝑀)
1023rpregt0d 13081 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
1037nngt0d 12313 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑀)
104 lediv2 12156 . . . . . . . . . . . . . 14 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (𝐸𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)))
105102, 80, 103, 102, 104syl121anc 1374 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)))
106101, 105mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 𝐸))
1073rpcnne0d 13084 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
108 divid 11951 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) → (𝐸 / 𝐸) = 1)
109107, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝐸) = 1)
110106, 109breqtrd 5174 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) ≤ 1)
1118, 2lenegd 11840 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑀) ≤ 1 ↔ -1 ≤ -(𝐸 / 𝑀)))
112110, 111mpbid 232 . . . . . . . . . 10 (𝜑 → -1 ≤ -(𝐸 / 𝑀))
113 bernneq 14265 . . . . . . . . . 10 ((-(𝐸 / 𝑀) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ -1 ≤ -(𝐸 / 𝑀)) → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀))
11479, 11, 112, 113syl3anc 1370 . . . . . . . . 9 (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀))
11571, 72negsubd 11624 . . . . . . . . . 10 (𝜑 → (1 + -(𝐸 / 𝑀)) = (1 − (𝐸 / 𝑀)))
116115oveq1d 7446 . . . . . . . . 9 (𝜑 → ((1 + -(𝐸 / 𝑀))↑𝑀) = ((1 − (𝐸 / 𝑀))↑𝑀))
117114, 116breqtrd 5174 . . . . . . . 8 (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
11878, 117eqbrtrd 5170 . . . . . . 7 (𝜑 → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
119118adantr 480 . . . . . 6 ((𝜑𝑡𝐵) → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
120 eqid 2735 . . . . . . 7 seq1( · , (𝐹𝑡)) = seq1( · , (𝐹𝑡))
1217adantr 480 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ ℕ)
122 eqid 2735 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
12319, 58, 122fmptdf 7137 . . . . . . . 8 ((𝜑𝑡𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ)
12444feq1d 6721 . . . . . . . 8 ((𝜑𝑡𝐵) → ((𝐹𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ))
125123, 124mpbird 257 . . . . . . 7 ((𝜑𝑡𝐵) → (𝐹𝑡):(1...𝑀)⟶ℝ)
126 stoweidlem42.10 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
127126r19.21bi 3249 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝐵) → (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
128127an32s 652 . . . . . . . 8 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
129128, 59breqtrrd 5176 . . . . . . 7 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝐹𝑡)‘𝑖))
13072addlidd 11460 . . . . . . . . . . 11 (𝜑 → (0 + (𝐸 / 𝑀)) = (𝐸 / 𝑀))
131 lediv2 12156 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
1322, 90, 80, 103, 102, 131syl221anc 1380 . . . . . . . . . . . . . 14 (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
13399, 132mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1))
13465div1d 12033 . . . . . . . . . . . . 13 (𝜑 → (𝐸 / 1) = 𝐸)
135133, 134breqtrd 5174 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝑀) ≤ 𝐸)
1368, 4, 2, 135, 98lelttrd 11417 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) < 1)
137130, 136eqbrtrd 5170 . . . . . . . . . 10 (𝜑 → (0 + (𝐸 / 𝑀)) < 1)
138 0red 11262 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
139138, 8, 2ltaddsubd 11861 . . . . . . . . . 10 (𝜑 → ((0 + (𝐸 / 𝑀)) < 1 ↔ 0 < (1 − (𝐸 / 𝑀))))
140137, 139mpbid 232 . . . . . . . . 9 (𝜑 → 0 < (1 − (𝐸 / 𝑀)))
1419, 140elrpd 13072 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ+)
142141adantr 480 . . . . . . 7 ((𝜑𝑡𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ+)
14328, 19, 120, 121, 125, 129, 142stoweidlem3 45959 . . . . . 6 ((𝜑𝑡𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) < (seq1( · , (𝐹𝑡))‘𝑀))
1446, 13, 64, 119, 143lelttrd 11417 . . . . 5 ((𝜑𝑡𝐵) → (1 − 𝐸) < (seq1( · , (𝐹𝑡))‘𝑀))
145 stoweidlem42.7 . . . . . . 7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
146145fvmpt2 7027 . . . . . 6 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
14739, 64, 146syl2anc 584 . . . . 5 ((𝜑𝑡𝐵) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
148144, 147breqtrrd 5176 . . . 4 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝑍𝑡))
149 simpl 482 . . . . 5 ((𝜑𝑡𝐵) → 𝜑)
150 stoweidlem42.3 . . . . . 6 𝑡𝑌
151 stoweidlem42.4 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
152 stoweidlem42.5 . . . . . 6 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
153 stoweidlem42.15 . . . . . 6 (𝜑𝑇 ∈ V)
154 stoweidlem42.14 . . . . . 6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
15517, 150, 151, 152, 22, 145, 153, 7, 45, 53, 154fmuldfeq 45539 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
156149, 39, 155syl2anc 584 . . . 4 ((𝜑𝑡𝐵) → (𝑋𝑡) = (𝑍𝑡))
157148, 156breqtrrd 5176 . . 3 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝑋𝑡))
158157ex 412 . 2 (𝜑 → (𝑡𝐵 → (1 − 𝐸) < (𝑋𝑡)))
1591, 158ralrimi 3255 1 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888  wne 2938  wral 3059  Vcvv 3478  wss 3963   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  3c3 12320  0cn0 12524  cuz 12876  +crp 13032  ...cfz 13544  seqcseq 14039  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100
This theorem is referenced by:  stoweidlem51  46007
  Copyright terms: Public domain W3C validator